vxWorks驱动架构

简介: <div>Vxworks内核驱动基本结构:</div> <div>三张表:1. 系统设备表  2. 系统驱动表 3. 文件描述符表</div> <div><br></div> <div>    Vxworks 内部对每个设备使用DEV_HDR 数据结构进行表示:</div> <div>Typedef struct</div> <div>{</div> <div>   DL_NO
Vxworks内核驱动基本结构:
三张表:1. 系统设备表  2. 系统驱动表 3. 文件描述符表

    Vxworks 内部对每个设备使用DEV_HDR 数据结构进行表示:
Typedef struct
{
   DL_NODE    node;
   Short      drvnum;
   Char       *name;
}
    该结构中给出了链接指针(用以将该结构串入队列中)、驱动索引号、设备节点名称。内核提供这个结构较为简单,只存储了一些设备的关键信息。底层驱动对其驱动的设备都有一个自定义数据结构表示,其中包含了驱动设备寄存器基地址,中断号,可能的数据缓冲区,保存内核回调函数的指针,以及一些标志位。最关键的一点是DEV_HDR必须是自定义数据结构的第一个成员变量,因为这个用户自定义结构最后需要添加到系统设备队列中,必须能够在用户定义结构与DEV_HDR结构之间进行转换,而将DEV_HDR结构设置为用户自定义结构的第一个成员变量就可以达到目的。

typedef struct
{
       DEV_HDR     pFCcardHdr;
       BOOL        created;
       char *      buf_virts;
       UINT32      iobase;
       UINT32      membase;
       char        irq;
       UINT32      irqvec;
       UINT32      Bus;
       UINT32      Device;
       UINT32      Func;
}DRV_CTRL;

    系统提供了iosDevAdd(DEV_HDR *pDevHdr, char *name, int drvnum)用于驱动程序调用注册一个设备。第三个参数是设备对应的驱动程序索引号。这个驱动号是iosDrvInstall函数的返回值,在设备初始化函数中,我们首先调用iosDrvInstall注册驱动,然后使用iosDrvInstall 函数返回的驱动号调用 iosDevAdd添加设备到系统中通过这两步设备就可以被用户程序使用了。
    用户调用open函数打开一个设备文件时,系统将以传入的文件路径名匹配系统设备的设备节点名,匹配方式是最佳匹配。
 
系统驱动表:
    系统驱动表包含了当前注册到I/O子系统下的所有驱动。这些驱动可以直接驱动硬件工作的驱动层。系统驱动表底层实现是一个数组,数组元素数目在内核初始化过程中指定。I/O子系统提供iosDrvInstall供驱动程序注册,iosDrvInstall原型如下:
Int iosDrvInstall
(
  FUNCPTR  pCreate,   FUNCPTR  pDelete,  
  FUNCPTR  pOpen,    FUNCPTR  pClose,  
  FUNCPTR  pRead,   FUNCPTR  pWrite,  FUNCPTR  pIoctl /*pointer to driver ioctl function*/
)

    一个设备驱动在初始化过程中一方面完成硬件设备寄存器配置,另一方面就是向I/O子系统注册驱动和设备。一个驱动并不需要实现上述所有函数,无须实现的函数直接传递NULL指针就可以了。iosDrvInstall 函数的基本实现即遍历drvTable数组,查询一个空闲表项,用传入的函数地址对各成员变量进行初始化。
 
系统文件描述符表
    文件描述符表表项索引被用做文件描述符ID,即open函数返回值。对于文件描述符,需要注意:标准输入、标准输出、标准错误输出虽然使用0,1,2三个文件描述符,但是可能在系统文件描述符表中只占用一个表项,即都使用同一个表项。Vxworks内核将0,1,2三个标准文件描述符与系统文件描述符表中的内容分开进行管理。
    系统文件描述符中的内容主要是针对硬件设备,使用一次open函数调用就占用一个表项:
int fd = open(DevName, 2,0);

    应用程序每调用一次open函数,系统文件描述符表中就增加一个有效表项,直到数组满为止。此时open函数调用将以失败返回,因此注意如果需要反复打开设备的话,一定要在设备不用的时候调用close函数关闭该描述符指向的设备,并在每次调用open函数之后检查返回的文件描述符是否合法。
相关文章
|
2月前
|
运维 监控 负载均衡
动态服务管理平台:驱动微服务架构的高效引擎
动态服务管理平台:驱动微服务架构的高效引擎
31 0
|
3月前
|
消息中间件 监控 NoSQL
驱动系统架构
【10月更文挑战第29天】
38 2
|
3月前
|
存储 前端开发 API
DDD领域驱动设计实战-分层架构
DDD分层架构通过明确各层职责及交互规则,有效降低了层间依赖。其基本原则是每层仅与下方层耦合,分为严格和松散两种形式。架构演进包括传统四层架构与改良版四层架构,后者采用依赖反转设计原则优化基础设施层位置。各层职责分明:用户接口层处理显示与请求;应用层负责服务编排与组合;领域层实现业务逻辑;基础层提供技术基础服务。通过合理设计聚合与依赖关系,DDD支持微服务架构灵活演进,提升系统适应性和可维护性。
|
5月前
|
缓存 前端开发 项目管理
业务驱动的应用架构设计
业务驱动的应用架构设计
72 1
|
5月前
|
消息中间件 Java RocketMQ
微服务架构师的福音:深度解析Spring Cloud RocketMQ,打造高可靠消息驱动系统的不二之选!
【8月更文挑战第29天】Spring Cloud RocketMQ结合了Spring Cloud生态与RocketMQ消息中间件的优势,简化了RocketMQ在微服务中的集成,使开发者能更专注业务逻辑。通过配置依赖和连接信息,可轻松搭建消息生产和消费流程,支持消息过滤、转换及分布式事务等功能,确保微服务间解耦的同时,提升了系统的稳定性和效率。掌握其应用,有助于构建复杂分布式系统。
78 0
|
5月前
|
机器学习/深度学习 并行计算 算法
深度学习驱动的声音生成:FunAudioLLM的创新架构
【8月更文第28天】随着深度学习技术的发展,声音合成的质量得到了显著提升。本文将介绍 FunAudioLLM —— 一种基于深度学习的声音生成框架,旨在创造高质量、自然流畅的声音内容。我们将探讨 FunAudioLLM 的核心技术、训练流程及其实现细节,并提供一些示例代码。
103 0
|
6月前
|
消息中间件 设计模式 Java
Java中的消息驱动架构设计
Java中的消息驱动架构设计
|
6月前
|
消息中间件 监控 Java
使用Kafka实现分布式事件驱动架构
使用Kafka实现分布式事件驱动架构
|
6月前
|
敏捷开发 Java 测试技术
「架构」模型驱动架构设计方法及其运用
本文探讨了MDA在软件开发中的应用,从需求分析到测试,使用UML建模功能需求,通过PIM设计架构,自动生成代码以减少错误。MDA提升了可维护性、可扩展性和可移植性,通过工具如Enterprise Architect和Eclipse MDT支持自动化转换。虽然有挑战,如模型创建和平台转换,但结合敏捷方法和适当工具能有效解决,从而提高开发效率和软件质量。
694 0
「架构」模型驱动架构设计方法及其运用
|
5月前
|
存储 安全 数据管理
业务驱动的数据架构设计
业务驱动的数据架构设计
53 0

热门文章

最新文章