DC学院学习笔记(二十三):进阶机器学习技术概览

简介: 高阶的机器学习算法:深度学习,强化学习及迁移学习简单了解

课程快看完了,王乐业老师讲的真不错,准备看完数据分析后,接着再买爬虫来好好看看。
还是把老师的笔记记下来,以后复习用。

神经网络

定义:
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
原理
所谓神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入。例如,下图就是一个简单的神经网络:
image
我们使用圆圈来表示神经网络的输入,标上“ +1”的圆圈被称为偏置节点,也就是截距项。神经网络最左边的一层叫做输入层(input layer),最右的一层叫做输出层(output layer)。中间所有节点组成的一层叫做隐藏层(hidden layer)。以上神经网络的例子中有3个输入单元$x_{1},x_{2},x_{3}$(偏置单元不计在内),3个隐藏单元$a_{1},a_{2},a_{3}$及一个输出单元$h_{w,b}(x)$。

本例神经网络的计算步骤如下:
image

深度学习

定义
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习之卷积神经网络

定义
卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络。卷积神经网络由三部分构成。第一部分是输入层。第二部分由n个卷积层和池化层的组合组成。第三部分由一个全连结的多层感知机分类器构成。

原理
卷积神经网络判断一个图片是否包含目标的过程,包括四个步骤:图像输入(Input Image)→卷积(Convolution)→最大池化(Max Pooling)→全连接神经网络(Fully-Connected Neural Network)计算。

卷积神经网络—图像处理

当图片通过输入层进入卷积层,首先初始化一个卷积核,用卷积核(也叫滤波器)和图片局部连接(与图片局部进行点乘,得到feature map),以横滑的方式,遍历整张图片。
下面展示了一个3×3的卷积核在5×5的图像上做卷积的过程。每个卷积都是一种特征提取方式,就像一个筛子,将图像中符合条件(激活值越大越符合条件)的部分筛选出来

_

深度学习之循环神经网络

定义
RNN(Recurrent Neuron Network)是一种对序列数据建模的神经网络,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。

原理
RNNs包含输入单元(Input units),输入集标记为{$x_{0},x_{1},x_{2},...,x_{t},x_{t+1},...$},而输出单元{$y_{0},y_{1},y_{2},...,y_{t},y_{t+1},...$}(Output units)的输出集则被标记为{}。RNNs还包含隐藏单元(Hidden units),我们将其输出集标记为{$s_{0},s_{1},s_{2},...,s_{t},s_{t+1},...$},这些隐藏单元完成了最为主要的工作。在RNNs中,在$t$时刻,经过运算得到隐藏层输出$h_t$,然后将$h_t$与$x_{t+1}$一同作为输入进入隐藏层,得到输出$h_{t+1}$,一直迭代,直到循环结束。
image

深度学习之应用

1. 图像处理

2012 年以来,深度学习极大的推动了图像识别的研究进展,突出体现在ImageNet ILSVRC 和人脸识别,而且正在快速推广到与图像识别相关的各个问题。深度学习的本质是通过多层非线性变换,从大数据中自动学习特征,从而替代手工设计的特征。深层的结构使其具有极强的表达能力和学习能力,尤其擅长提取复杂的全局特征和上下文信息,而这是浅层模型难以做到的。一幅图像中,各种隐含的因素往往以复杂的非线性的方式关联在一起,而深度学习可以使这些因素分级开,在其最高隐含层不同神经元代表了不同的因素,从而使分类变得简单。

2. 机器翻译

机器翻译研究60多年来的发展趋势是不断降低人在翻译过程中的主导作用;基于深度学习的方法可以直接用神经网络描述整个翻译过程。在深度学习中,因为RNN具有记忆功能,能够记住处理过的每个词,所以它计算的最终编码表示句子中的所有词,第一个RNN可以给句子生成编码。然后,第二RNN遵循相反的逻辑,解码得到原始句子。

TensorFlow框架

TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。它可被用于语音识别或图像识别等多项机器深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。TensorFlow完全开源,任何人都可以用。

强化学习

定义
强化学习(reinforcement learning),就是智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

原理
强化学习把学习看作试探评价过程,Agent选择一个动作用于环境,环境接受该动作后状态发生变化,同时产生一个强化信号(奖或惩)反馈给Agent,Agent根据强化信号和环境当前状态再选择下一个动作,选择的原则是使受到正强化(奖)的概率增大。选择的动作不仅影响立即强化值,而且影响环境下一时刻的状态及最终的强化值。

image

迁移学习

定义
迁移学习(Transfer Learning)可以从现有的数据中迁移知识,用来帮助将来的学习。迁移学习的目标是将从一个环境中学到的知识用来帮助新环境中的学习任务。

深度迁移学习示例

在这个框架中对三个部分进行训练:一个是feature extractor,这个是用于提取特征的,一般由卷积层与pooling层组成;另一个是label classifier,使用全连接层+逻辑斯蒂分类器;第三个在一般的分类器中不会出现,也就是和feature extractor构成对抗网络框架的分类器domain classifier,它也是一个分类器,由全连接层+交叉熵分类器构成。其中全连接层的激活函数都是relu函数。对抗体现在对于domain classifier损失在训练阶段两个相反的要求。具体而言:对于domain adaptation应用,我们希望网络学到的特征表示具有领域不变(domain invariant)的特征,那么就要求domain classifier不能正确进行领域分类,也就是要求domain classifier的分类损失最大;另一方面在对domain classifier训练时,我们肯定要求分类器能尽可能的正确分类,也就是domain classifier的分类损失最小。
image

目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
1月前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
84 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
1月前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
93 6
|
2月前
|
机器学习/深度学习 搜索推荐 算法
在数字化时代,推荐系统成为互联网应用的重要组成部分,通过机器学习技术根据用户兴趣和行为提供个性化推荐,提升用户体验
在数字化时代,推荐系统成为互联网应用的重要组成部分,通过机器学习技术根据用户兴趣和行为提供个性化推荐,提升用户体验。本文探讨了推荐系统的基本原理、常用算法、实现步骤及Python应用,介绍了如何克服数据稀疏性、冷启动等问题,强调了合理选择算法和持续优化的重要性。
96 4
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的自然语言处理技术
【10月更文挑战第38天】在本文中,我们将深入探讨自然语言处理(NLP)技术及其在机器学习领域的应用。通过浅显易懂的语言和生动的比喻,我们将揭示NLP技术的奥秘,包括其工作原理、主要任务以及面临的挑战。此外,我们还将分享一些实用的代码示例,帮助您更好地理解和掌握这一技术。无论您是初学者还是有经验的开发者,相信您都能从本文中获得宝贵的知识和启示。
49 3
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
154 11
|
2月前
|
机器学习/深度学习 数据可视化 算法
机器学习中的特征选择与降维技术
机器学习中的特征选择与降维技术
103 0
|
5月前
|
人工智能 Anolis
展示全栈式AI平台,探讨软硬件技术!英特尔分论坛议程来啦 | 2024 龙蜥大会
英特尔分论坛将依托英特尔云到端的全面产品组合,围绕至强可扩展处理器、AI 加速器、以及 oneAPI、OpenVINO 等软硬件技术展开探讨。
展示全栈式AI平台,探讨软硬件技术!英特尔分论坛议程来啦 | 2024 龙蜥大会
|
4月前
|
机器学习/深度学习 数据可视化 JavaScript
探索机器学习模型的可视化技术
【9月更文挑战第23天】在数据科学中,理解和解释机器学习模型的决策过程是至关重要的。本文将介绍几种流行的可视化工具和库,如TensorBoard、D3.js等,帮助读者更好地理解模型内部工作原理及其预测结果。通过实例演示如何使用这些工具进行模型可视化,增强模型的可解释性。