PCI-E配置MSI中断流程解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: <div id="article_content" class="article_content" style="margin: 20px 0px 0px; font-size: 14px; line-height: 26px; font-family: Arial;"><p style="margin-top: 0px; margin-bottom: 0px; padding-top: 0

   在传统的pci中断体系中,每一个pci总线上的设备被分配一个特定的中断号,然后当设备需要中断cpu时,设备直接发出int信号,然后在cpu的inta引脚拉低的时候将自己的中断号放在数据总线上,一切都要设备自己负责,这一切的缘由一部分就是因为pci的并行性,实现事务很复杂,而pcie是串行的,很容易定义协议包,因此很容易就实现了由root complex代理中断的功能,因此设备也就可以动态的分配独占的中断号了,因为中断号的分配完全是软件解决的,而不再像传统pci那样是硬件解决的了,软件的最大特点就是其灵活性,因此pcie更适合大量设备的环境,中断处理程序再也不需要大量遍历共享中断号的设备来确定中断源了。


在调试PCI-E的MSI中断前,需要先保证将传统中断调通,然后再调试这个。MSI中断究其本质,就是一个存储器读写事件。将MSI Address设置为内存中的某个地址(可以为64位),产生MSI中断时,中断源会在MSI Address所在的地址写入MSI Data。也就是说,如果有四条MSI中断线,就会依次写入Data、Data+1、Data+2、Data+3在内存中,依次来区分中断源设备。

设备端的定义
    设备在自己的配置空间定义了自己的Capabilities list. 如果该设备支持MSI中断,在此capabilities list其中必定有一个节点的Capabilities ID=0x5D(0x5D 表明是MSI中断节点,其位置由设备自定义)

主控制器
1> 主控制器的工作是扫描到该设备后顺藤摸瓜,沿着Capabilities List找到MSI中断节点.

2> 主控制器给设备上的Address Register和data register俩寄存器赋值(以MPC8548E为例,该值是中断控制器的MSI中断寄存器定义决定);
设备
    MSI中断, 本质上是一个内存写事务,该事务的payload部分都由MSI Capabilities 寄存器的值组成。

The key points here are:
1> Device prepare the capabilities list and the MSI node
2> Controller assign a value to the address register, which is inside the MSI capability node, and the value assigned is the kernel virtual address of the MSI interrupt description register inside the interrupt controller.
3> As well, the value assigned to the data register is defined by the MSI registers inside the interrupt controller.

    Capabilites list 指针位于config space的 0x34 偏移量处,它是所有capabilities 节点的根节点。

    和传统中断在系统初始化扫描PCI bus tree时就已自动为设备分配好中断号不同,MSI中断是在设备驱动程序初始化时调用pci_enable_msi() kernel API 时才分配中断号的。所以如果使用传统中断,在设备驱动程序中直接调用request_irq(pDev->irq, handler,...) 注册设备中断处理函数即可。而使用MSI中断的话,需先调用pci_enable_msi() 初始化设备MSI 结构,分配MSI中断号,并替换INTx中断号,再调用request_irq(pDev->irq, handler,...) 注册设备中断处理函数。除了卸载中断处理函数需要相应地调用pci_diable_msi()外,其他的处理完全相同。下面的Linux 内核代码详细描述了这一过程:

[cpp]  view plain copy
  1. int pci_enable_msi(struct pci_dev* dev)  
  2. {  
  3.     int status;  
  4.   
  5.     status = pci_msi_check_device(dev, 1, PCI_CAP_ID_MSI);  
  6.     if (status)  
  7.         return status;  
  8.   
  9.     WARN_ON(!!dev->msi_enabled);  
  10.   
  11.      
  12.     if (dev->msix_enabled) {  
  13.         dev_info(&dev->dev, "can't enable MSI "  
  14.              "(MSI-X already enabled)\n");  
  15.         return -EINVAL;  
  16.     }  
  17.     status = msi_capability_init(dev);//此函数会配置设备MSI结构并分配替换MSI中断号  
  18. }  
  19.   
  20. static int msi_capability_init(struct pci_dev *dev)  
  21. {  
  22.     struct msi_desc *entry;  
  23.     int pos, ret;  
  24.     u16 control;  
  25.     ......  
  26.     msi_set_enable(dev, 0);  
  27.      
  28.     pci_intx_for_msi(dev, 0);// disable INTx interrupts     
  29.     msi_set_enable(dev, 1);  
  30.     dev->msi_enabled = 1;  
  31.   
  32.     dev->irq = entry->irq;     
  33.     return 0;  
  34. }  
相关文章
|
13天前
|
域名解析 存储 缓存
DNS是什么?内网电脑需要配置吗?
【10月更文挑战第22天】DNS是什么?内网电脑需要配置吗?
48 1
|
26天前
|
机器学习/深度学习 调度
mmseg配置解析 Polynomial Decay 多项式衰减
Polynomial Decay(多项式衰减)是一种常用的学习率调度方法,通过多项式函数逐步减少学习率,帮助模型更好地收敛。公式为:\[ lr = (lr_{initial} - \eta_{min}) \times \left(1 - \frac{current\_iter}{max\_iters}\right)^{power} + \eta_{min} \]。参数包括初始学习率、最小学习率、当前迭代次数、总迭代次数和衰减指数。适用于需要平滑降低学习率的场景,特别在训练后期微调模型参数。
48 0
mmseg配置解析 Polynomial Decay 多项式衰减
|
22天前
|
JSON JavaScript 前端开发
深入解析ESLint配置:从入门到精通的全方位指南,精细调优你的代码质量保障工具
深入解析ESLint配置:从入门到精通的全方位指南,精细调优你的代码质量保障工具
63 0
|
22天前
|
敏捷开发 数据可视化 测试技术
解析软件项目管理:以板栗看板为例,其如何有效影响并优化软件开发流程
软件项目管理是一个复杂而重要的过程,涵盖了软件产品的创建、维护和优化。其核心目标是确保软件项目能够顺利完成,同时满足预定的质量、时间和预算目标。本文将深入探讨软件项目管理的内涵及其对软件开发过程的影响,并介绍一些有效的管理工具。
|
26天前
|
编解码 计算机视觉
mmseg配置解析 align_corners=False
`align_corners=False` 是图像插值操作中的一个参数,影响输入和输出图像的角点对齐方式。`align_corners=True` 严格对齐角点,而 `align_corners=False` 均匀分布像素点,更适用于保持整体比例关系的任务,如语义分割。
28 0
|
26天前
|
机器学习/深度学习 编解码
mmseg配置解析 contract_dilation=True
`contract_dilation=True` 是 ResNetV1c 中的一种设置,用于解决多层膨胀卷积中的“栅格效应”。通过调整膨胀率,使卷积核在不同阶段更密集地覆盖输入特征图,避免信息丢失,提升特征提取质量,尤其在语义分割任务中效果显著。
37 0
|
28天前
|
XML Java 数据格式
手动开发-简单的Spring基于注解配置的程序--源码解析
手动开发-简单的Spring基于注解配置的程序--源码解析
43 0
|
28天前
|
XML Java 数据格式
手动开发-简单的Spring基于XML配置的程序--源码解析
手动开发-简单的Spring基于XML配置的程序--源码解析
75 0
|
28天前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
62 0
|
28天前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
49 0

热门文章

最新文章

推荐镜像

更多