Spark连接Hadoop读取HDFS问题小结

简介:

Spark与hadoop版本

我使用0.7.2的Spark版本,且是pre-built过的版本,支持的hadoop版本是hadoop1。在http://spark-project.org/files/上能下载的预编译过的spark版本里,凡是预编译cdh4的压缩包,下载后解压会中断,文件本身有问题。我在google论坛上发帖说明了这个问题:https://groups.google.com/forum/#!topic/spark-users/Y4iJ1458d18。所以我现在使用预编译了1代hadoop的spark,来连接2代hadoop。按理说在编译spark的时候,通过改动SPARK_HOME/project/SparkBuild.scala,可以指定要支持的hadoop版本:

  // Hadoop version to build against. For example, "0.20.2", "0.20.205.0", or
  // "1.0.4" for Apache releases, or "0.20.2-cdh3u5" for Cloudera Hadoop.
  val HADOOP_VERSION = "1.0.4"
  val HADOOP_MAJOR_VERSION = "1"

  // For Hadoop 2 versions such as "2.0.0-mr1-cdh4.1.1", set the HADOOP_MAJOR_VERSION to "2"
  //val HADOOP_VERSION = "2.0.0-mr1-cdh4.1.1"
  //val HADOOP_MAJOR_VERSION = "2"

解决方案

1. 受了https://groups.google.com/forum/#!topic/spark-users/XKj__psY-EA这个帖子的启发,替换了SPARK_HOME/lib_managed/jars下的hadoop-core-1.0.4.jar,换成了自己hadoop-client里hadoop/lib下的hadoop-2-core.jar包。

2. 在SPARK_HOME/conf下要添加hadoop的配置文件。我是添加了hadoop-site.xml和hadoop-default.xml两个配置文件。原因是,前者提供了连接的hdfs集群信息和账户密码;后者提供了下面这个配置:

<property>
   <name>fs.hdfs.impl</name>
   <value>org.apache.hadoop.hdfs.DistributedFileSystem</value>
   <description>The FileSystem for hdfs: uris.</description>
</property>
完成这两步后,进入./spark-shell,运行下

val file = sc.textFile("hdfs://xxx")
file.count()
能正常跑出结果的话就OK了。


其他问题

这边再提供一个Unable to load native-hadoop library 和 Snappy native library not loaded的解决方案。这个问题主要是jre目录下缺少了libhadoop.so和libsnappy.so两个文件。具体是,spark-shell依赖的是scala,scala依赖的是JAVA_HOME下的jdk,libhadoop.so和libsnappy.so两个文件应该放到JAVA_HOME/jre/lib/amd64下面。要注意的是要知道真正依赖到的JAVA_HOME是哪一个,把两个.so放对地方。这两个so:libhadoop.so和libsnappy.so。前一个so可以在HADOOP_HOME下找到,比如hadoop\lib\native\Linux-amd64-64。第二个libsnappy.so需要下载一个snappy-1.1.0.tar.gz,然后./configure,make编译出来。snappy是google的一个压缩算法,在hadoop jira下https://issues.apache.org/jira/browse/HADOOP-7206记录了这次集成。


单替换了hadoop的core包后,可能还会出一些WARN或者ERROR的提示,主要牵扯到的是hadoop别的包的一些兼容啊,版本提升的问题。具体问题具体再解决吧。


(全文完)


目录
相关文章
|
22天前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
103 6
|
22天前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
52 2
|
23天前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
61 0
|
23天前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
29 0
|
23天前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
39 0
|
分布式计算 应用服务中间件 Docker
Hadoop HDFS分布式文件系统Docker版
一、Hadoop文件系统HDFS 构建单节点的伪分布式HDFS 构建4个节点的HDFS分布式系统 nameNode secondnameNode datanode1 datanode2 其中 datanode2动态节点,在HDFS系统运行时,==动态加入==。
2604 0
|
18天前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
35 1
|
23天前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
64 5
|
23天前
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
31 4
|
23天前
|
大数据 网络安全 数据安全/隐私保护
大数据-03-Hadoop集群 免密登录 超详细 3节点云 分发脚本 踩坑笔记 SSH免密 集群搭建(二)
大数据-03-Hadoop集群 免密登录 超详细 3节点云 分发脚本 踩坑笔记 SSH免密 集群搭建(二)
83 5

相关实验场景

更多