约瑟夫环(约瑟夫问题)是一个数学的应用问题:已知n个人(以编号1,2,3…n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到m的那个人出列;他的下一个人又从1开始报数,数到m的那个人又出列;依此规律重复下去,直到圆桌周围的人全部出列。通常解决这类问题时我们把编号从0~n-1,最后结果+1即为原问题的解。
数组方式
假设下标从0开始,0,1,2 .. m-1共m个人,从1开始报数,报到k则此人从环出退出,问最后剩下的一个人的编号是多少?
现在假设m=10
0 1 2 3 4 5 6 7 8 9 k=3
第一个人出列后的序列为:
0 1 3 4 5 6 7 8 9
即:
3 4 5 6 7 8 9 0 1(*)
我们把该式转化为:
0 1 2 3 4 5 6 7 8 (**)
则你会发现: ((**)+3)%10则转化为(*)式了
也就是说,我们求出9个人中第9次出环的编号,最后进行上面的转换就能得到10个人第10次出环的编号了
设f(m,k,i)为m个人的环,报数为k,第i个人出环的编号,则f(10,3,10)是我们要的结果
当i=1时, f(m, k ,i) = (m+k-1) % m
当i!=1时, f(m, k, i)= ( f(m-1, k, i-1)+k ) % m
Java实现:
public class Test {
public static void main(String[] args) {
for (int i = 1; i <= 10; i++){
System.out.print(fun(10,3,i) + " ");
}
}
public static int fun(int m, int k, int i){
if (i == 1){
return (m + k - 1) % m;
}else{
return (fun(m - 1, k, i - 1) + k) % m;
}
}
}
上述实现将结点的值设为0~n-1,若要变为1~n-1,则打印fun(m, k, i) + 1即可。
Python实现:
def fun(m, k, i):
if i == 1:
return (m + k - 1) % m
else:
return (fun(m - 1, k, i - 1) + k) % m
for i in range(1, 11):
print(fun(10, 3, i), end=' ')
C++实现:
#include <iostream>
using namespace std;
int fun(int m, int k, int i);
int main()
{
for (int i = 1; i <= 10; i++)
{
cout<<fun(10, 3, i)<<" "; // 输出数值为[0,9]
//cout<<fun(10, 3, i) + 1<<" "; // 输出数值为[1,10]
}
}
int fun(int m, int k, int i)
{
if (i == 1)
{
return (m + k - 1) % m;
}
else
{
return (fun(m - 1, k, i - 1) + k) % m;
}
}
链表方式
使用一个循环链表来实现,每次将一个结点移出链表。
Java实现:
class ListNode{
int val;
ListNode next;
ListNode(int x) {val = x;}
}
public class Josephus {
ListNode head;
int n;
Josephus(int x){
n = x;
head = new ListNode(1);
ListNode pre = head;
ListNode cur = null;
for (int i = 2; i <= n; i++){
cur = new ListNode(i);
pre.next = cur;
pre = cur;
}
cur.next = head;
}
public void PerformKilling(int d){
d = d % n;
ListNode pre = null;
ListNode cur = head;
int count = 1;
while (count++ <= n){ // while (cur.next != cur)
int i = 1;
while (i++ < d){
pre = cur;
cur = cur.next;
}
System.out.println("Killing: " + cur.val);
pre.next = cur.next;
cur = cur.next;
i = 1;
}
//System.out.println("Killing: " + cur.val);
}
}
Python实现:
class ListNode:
def __init__(self, x):
self.val = x
self.next = None
class Josephus:
def __init__(self, x):
self.n = x
self.head = ListNode(1)
pre = self.head
for i in range(2, x + 1):
cur = ListNode(i)
pre.next = cur
pre = cur
cur.next = self.head
def performKilling(self, d):
cur = self.head
while cur.next != cur:
for i in range(1, d):
pre = cur
cur = cur.next
print(cur.val, end=' ')
pre.next = cur.next
cur = cur.next
print(cur.val, end=' ')
J = Josephus(10)
J.performKilling(3)
C++实现:
#include <iostream>
using namespace std;
struct ListNode
{
int val;
ListNode *next;
ListNode(int x) : val(x), next(NULL) {}
};
class Josephus
{
public:
Josephus(int x)
{
n = x;
head = new ListNode(1);
ListNode *pre = head;
ListNode *cur;
for (int i = 2; i <= x; i++)
{
cur = new ListNode(i);
pre->next = cur;
pre = cur;
}
cur->next = head;
}
void performKilling(int d)
{
d %= n;
int count = 1;
ListNode *pre;
ListNode *cur = head;
while (count++ <= n) //while (cur->next != cur)
{
for (int i = 1; i < d; i++)
{
pre = cur;
cur = cur->next;
}
cout<<cur->val<<" ";
pre->next = cur->next;
delete cur;
cur = pre->next;
}
//cout<<cur->val;
//delete cur;
}
private:
ListNode *head;
int n; //size of the linked list
};
int main()
{
Josephus *J = new Josephus(10);
J->performKilling(3);
}
(使用C++时,特别注意的是释放内存)
结束条件可以设置为已经打印了n个结点,或者链表中仅有一个结点(继续打印该唯一结点)。+
转载:http://blog.csdn.net/foreverling/article/details/46502983