精选NLP、CV领域论文TOP10(附链接)

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介:

自然语言处理

01

Knowledge Graph Embedding: A Survey of Approaches and Applications

@jerryshi 推荐

#Knowledge Graph

本文对当下流行的 Knowledge Graph Eembedding 进行汇总,主要介绍了两大类,Translational Distance Models 和 Semantic Matching Models,简要叙述了每中方式下的算法。最后又给出了 KG Embedding 的一些应用,包括 KG 内部知识补全及外部的关系抽取、QA、推荐等。

论文链接:

https://www.paperweekly.site/papers/1425

                                                                                                                           02

Parallel WaveNet: Fast High-Fidelity Speech Synthesis

@wuhecong 推荐

#Deep Learning


DeepmMind 17 年 11 月份的论文,wavenet 的改良版本,实现了并行文本转语音。可以和百度的 Deep Voice 3 对比一下。

论文链接

https://www.paperweekly.site/papers/1416

03

Deconvolutional Latent-Variable Model for Text Sequence Matching

@zhangjianhai 推荐

#Sentence Matching

利用 Convolution encoder - Deconvolution decoder 学习句子的语义表示,将 cnn-deconv 框架用于文本匹配任务中,如 Text Entailment、Paraphrase Identification 任务中,generation 和 discriminative 共同训练,提升特定任务的效果。

该论文方法优势是可以利用 unlabeled 数据帮助学习句子表示,当数据不足时非常有效,随着标注数据的增加,优势逐渐减小。

论文链接

https://www.paperweekly.site/papers/1387

04

Exploring the Effectiveness of Convolutional Neural Networks for Answer Selection in End-to-End Question Answering

@longquan 推荐

#QA System

本文尝试探索了从整个端到端问答系统的流程的角度去衡量卷积神经网络对于答案选择任务的有效性。使用的数据集是标准的 TrecQA 数据集。

论文链接

https://www.paperweekly.site/papers/1400

05

Attention-based LSTM for Aspect-level Sentiment Classification

@applenob 推荐

#Sentiment Classification

使用基于 Attention 的 LSTM 解决细粒度的情感分析问题,在 SemEval 2014 上取得 state-of-art 的结果。

论文链接

https://www.paperweekly.site/papers/1359

计算机视觉

06

Learning a Wavelet-like Auto-Encoder to Accelerate Deep Neural Networks

@Aidon 推荐

#Neural Networks

文章提出一种加速 DNNs 的新方法(WAE: wavelet-like auto-encoder)来克服现有方法中存在的一个主要问题:如何保证网络加速而又不损失网络性能。

MAE 借助小波的思想,在 encoding 阶段利用 CNNs 分别提取图像的低频分量和高频分量,在 decoding 阶段利用这两个分量恢复出原始图像。

训练好 MAE 之后,可以用于提取图像的低频分量和高频分量,比如在图像分类任务中,将低频分量输入到标准的分类 DNNs(如 VGG-16,ResNet)中,然后与高频分量融合后一起用于分类。

这里提高效率的关键在于,相比于原始图像,提取的低频分量和高频分量都是低分率(原始图像的 1/4)的。

论文链接

https://www.paperweekly.site/papers/1413

07

Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning

@snowwalkerj 推荐

#Face Recognition

在不直接接触模型和训练样本的前提下,只使用极少量的“污染样本”来迷惑模型,达到攻击(伪装)指定类别的目的。攻击者可以通过佩戴特定的装饰来达到把自己伪装成某个特定目标的目的。

论文链接

https://www.paperweekly.site/papers/1384

08

Data Distillation: Towards Omni-Supervised Learning

@corenel 推荐

#Unsupervised Learning

本文来自 Facebook AI Research,提出了一种利用单一模型来 ensemle 不同 encoded features 来进行 self=training 的方法,就结果上来说很不错,值得一看。

论文链接

https://www.paperweekly.site/papers/1380

09

Toward Multimodal Image-to-Image Translation

@duinodu 推荐

#Image-to-image Translation

在很多 image-to-image 问题中,one-to-many 是大部分情况,而一般方法比如 pix2pix,仅仅能产生 one-to-one 的结果,但似乎 one-to-many 更符合常理。比如一张灰色的图,对应的彩色图片应该有很多种方式,不仅仅是一种。

困难在于,GAN 总是会让 G 产生某几种固定的模式输出,而如果简单地在输入加随机噪声,G 会在 D 的判别下,忽略随机噪声的作用,还是会有 mode collapse 问题。

文章提出一种 bicycle 的方式,显式地对隐含变量 z 进行表示,处理 one-to-many 中的 mode collapse 问题。

论文链接

https://www.paperweekly.site/papers/1373

10

Video Object Segmentation with Re-identification

@chenhong 推荐

#Video Object Segmentation

传统的视频分割方法依赖于生成掩膜的时间连续性,但是无法处理目标丢失或目较大的位移等情况。

论文为了克服这些问题,提出视频对象分割与重新识别( Video Object Segmentation with Re-identification,VSReID),包括掩码生成模块和 ReID 模块(Person re-identification,ReID,既给定一个监控行人图像,跨设备检索行人的图像)。

前者通过 flow warping 生成初始化概率图,后者自适应匹配检索丢失的目标实体。通过通过两个模块的迭代应用,本文的模型在 DAVIS-2017 取得冠军,验证了算法的性能。

论文链接

https://www.paperweekly.site/papers/1398


原文发布时间为:2018-02-12

本文作者:PaperDaily

本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”微信公众号

相关文章
|
5月前
|
自然语言处理 监控 自动驾驶
大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
【7月更文挑战第26天】大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
277 11
|
4月前
|
机器学习/深度学习 自然语言处理 PyTorch
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--6 提分方案
在讯飞英文学术论文分类挑战赛中的提分技巧和实现方法,包括数据增强、投票融合、伪标签等策略,以及加快模型训练的技巧,如混合精度训练和使用AdamW优化器等。
49 0
|
4月前
|
数据采集 机器学习/深度学习 存储
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–5 Bert 方案
在讯飞英文学术论文分类挑战赛中使用BERT模型进行文本分类的方法,包括数据预处理、模型微调技巧、长文本处理策略以及通过不同模型和数据增强技术提高准确率的过程。
46 0
|
4月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案
在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。
54 0
|
4月前
|
数据采集 自然语言处理 机器学习/深度学习
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–3 TextCNN Fasttext 方案
讯飞英文学术论文分类挑战赛中使用TextCNN和FastText模型进行文本分类的方案,包括数据预处理、模型训练和对抗训练等步骤,并分享了模型调优的经验。
45 0
|
4月前
|
机器学习/深度学习 自然语言处理 数据挖掘
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--2 数据分析
讯飞英文学术论文分类挑战赛数据集的分析,包括数据加载、缺失值检查、标签分布、文本长度统计等内容,并总结了数据的基本情况。
25 0
|
4月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--1 赛后总结与分析
参与讯飞英文学术论文分类挑战赛的经验,包括使用的多种模型和技术,如TextCNN、FastText、LightGBM和BERT,以及提分策略和遇到的问题。
46 0
|
6月前
|
自然语言处理
【自然语言处理NLP】DPCNN模型论文精读笔记
【自然语言处理NLP】DPCNN模型论文精读笔记
79 2
|
7月前
|
机器学习/深度学习 数据采集 自然语言处理
NLP比赛笔记(基于论文摘要的文本分类与关键词抽取挑战赛)
NLP比赛笔记(基于论文摘要的文本分类与关键词抽取挑战赛)
|
机器学习/深度学习 人工智能 编解码
NLP领域再创佳绩!阿里云机器学习平台 PAI 多篇论文入选 ACL 2023
阿里云机器学习平台PAI主导的多篇论文在ACL 2023 Industry Track上入选。

热门文章

最新文章