Java Cache系列之Cache概述和Simple Cache

简介:
前记:最近公司在做的项目完全基于Cache(Gemfire)构建了一个类数据库的系统,自己做的一个小项目里用过Guava的Cache,以前做过的项目中使用过EHCache,既然和Cache那么有缘,那就趁这个机会好好研究一下Java中的Cache库。在Java社区中已经提供了很多Cache库实现,具体可以参考http://www.open-open.com/13.htm,这里只关注自己用到的几个Cache库而且这几个库都比较具有代表性:Guava中提供的Cache是基于单JVM的简单实现;EHCache出自Hibernate,也是基于单JVM的实现,是对单JVM Cache比较完善的实现;而Gemfire则提供了对分布式Cache的完善实现。这一系列的文章主要关注在这几个Cache系统的实现上,因而步探讨关于Cache的好处、何时用Cache等问题,由于他们都是基于内存的Cache,因而也仅局限于这种类型的Cache(说实话,我不知道有没有其他的Cache系统,比如基于文件?囧)。

记得我最早接触Cache是在大学学计算机组成原理的时候,由于CPU的速度要远大于内存的读取速度,为了提高CPU的效率,CPU会在内部提供缓存区,该缓存区的读取速度和CPU的处理速度类似,CPU可以直接从缓存区中读取数据,从而解决CPU的处理速度和内存读取速度不匹配的问题。缓存之所以能解决这个问题是基于程序的局部性原理,即”程序在执行时呈现出局部性规律,即在一段时间内,整个程序的执行仅限于程序中的某一部分。相应地,执行所访问的存储空间也局限于某个内存区域。局部性原理又表现为:时间局部性和空间局部性。时间局部性是指如果程序中的某条指令一旦执行,则不久之后该指令可能再次被执行;如果某数据被访问,则不久之后该数据可能再次被访问。空间局部性是指一旦程序访问了某个存储单元,则不久之后。其附近的存储单元也将被访问。”在实际工作中,CPU先向缓存区读取数据,如果缓存区已存在,则读取缓存中的数据(命中),否则(失效),将内存中相应数据块载入缓存中,以提高接下来的访问速度。由于成本和CPU大小的限制,CPU只能提供有限的缓存区,因而缓存区的大小是衡量CPU性能的重要指标之一。

使用缓存,在CPU向内存更新数据时需要处理一个问题(写回策略问题),即CPU在更新数据时只更新缓存的数据(write back,写回,当缓存需要被替换时才将缓存中更新的值写回内存),还是CPU在更新数据时同时更新缓存中和内存中的数据(write through,写通)。在写回策略中,为了减少内存写操作,缓存块通常还设有一个脏位(dirty bit),用以标识该块在被载入之后是否发生过更新。如果一个缓存块在被置换回内存之前从未被写入过,则可以免去回写操作;写回的优点是节省了大量的写操作。这主要是因为,对一个数据块内不同单元的更新仅需一次写操作即可完成。这种内存带宽上的节省进一步降低了能耗,因此颇适用于嵌入式系统。写通策略由于要经常和内存交互(有些CPU设计会在中间提供写缓冲器以缓解性能),因而性能较差,但是它实现简单,而且能简单的维持数据一致性。

在软件的缓存系统中,一般是为了解决内存的访问速率和磁盘、网络、数据库(属于磁盘或网络访问,单独列出来因为它的应用比较广泛)等访问速率不匹配的问题(对于内存缓存系统来说)。但是由于内存大小和成本的限制,我们又不能把所有的数据先加载进内存来。因而如CPU中的缓存,我们只能先将一部分数据保存在缓存中。此时,对于缓存,我们一般要解决如下需求:
  1. 使用给定Key从Cache中读取Value值。CPU是通过内存地址来定位内存已获取相应内存中的值,类似的在软件Cache中,需要通过某个Key值来标识相关的值。因而可以简单的认为软件中的Cache是一个存储键值对的Map,比如Gemfire中的Region就继承自Map,只是Cache的实现更加复杂。
  2. 当给定的Key在当前Cache不存在时,程序员可以通过指定相应的逻辑从其他源(如数据库、网络等源)中加载该Key对应的Value值,同时将该值返回。在CPU中,基于程序局部性原理,一般是默认的加载接下来的一段内存块,然而在软件中,不同的需求有不同的加载逻辑,因而需要用户自己指定对应的加载逻辑,而且一般来说也很难预知接下来要读取的数据,所以只能一次只加载一条纪录(对可预知的场景下当然可以批量加载数据,只是此时需要权衡当前操作的响应时间问题)。
  3. 可以向Cache中写入Key-Value键值对(新增的纪录或对原有的键值对的更新)。就像CPU的写回策略中有写回和写通策略,有些Cache系统提供了写通接口。如果没有提供写通接口,程序员需要额外的逻辑处理写通策略。也可以如CPU中的Cache一样,只当相应的键值对移出Cache以后,再将值写回到数据源,可以提供一个标记位以决定要不要写回(不过感觉这种实现比较复杂,代码的的耦合度也比较高,如果为提升写的速度,采用异步写回即可,为防止数据丢失,可以使用Queue来存储)。
  4. 将给定Key的键值对移出Cache(或给定多个Key以批量移除,甚至清除整个Cache)。
  5. 配置Cache的最大使用率,当Cache超过该使用率时,可配置溢出策略
    1. 直接移除溢出的键值对。在移除时决定是否要写回已更新的数据到数据源。
    2. 将溢出的溢出的键值对写到磁盘中。在写磁盘时需要解决如何序列化键值对,如何存储序列化后的数据到磁盘中,如何布局磁盘存储,如何解决磁盘碎片问题,如何从磁盘中找回相应的键值对,如何读取磁盘中的数据并方序列化,如何处理磁盘溢出等问题。
    3. 在溢出策略中,除了如何处理溢出的键值对问题,还需要处理如何选择溢出的键值对问题。这有点类似内存的页面置换算法(其实内存也可以看作是对磁盘的Cache),一般使用的算法有:先进先出(FIFO)、最近最少使用(LRU)、最少使用(LFU)、Clock置换(类LRU)、工作集等算法。
  6. 对Cache中的键值对,可以配置其生存时间,以处理某些键值对在长时间不被使用,但是又没能溢出的问题(因为溢出策略的选择或者Cache没有到溢出阶段),以提前释放内存。
  7. 对某些特定的键值对,我们希望它能一直留在内存中不被溢出,有些Cache系统提供PIN配置(动态或静态),以确保该键值对不会被溢出。
  8. 提供Cache状态、命中率等统计信息,如磁盘大小、Cache大小、平均查询时间、每秒查询次数、内存命中次数、磁盘命中次数等信息。
  9. 提供注册Cache相关的事件处理器,如Cache的创建、Cache的销毁、一条键值对的添加、一条键值对的更新、键值对溢出等事件。
  10. 由于引入Cache的目的就是为了提升程序的读写性能,而且一般Cache都需要在多线程环境下工作,因而在实现时一般需要保证线程安全,以及提供高效的读写性能。
在Java中,Map是最简单的Cache,为了高效的在多线程环境中使用,可以使用ConcurrentHashMap,这也正是我之前参与的一个项目中最开始的实现(后来引入EHCache)。为了语意更加清晰、保持接口的简单,下面我实现了一个基于Map的最简单的Cache系统,用以演示Cache的基本使用方式。用户可以向它提供数据、查询数据、判断给定Key的存在性、移除给定的Key(s)、清除整个Cache等操作。以下是Cache的接口定义。
public  interface Cache<K, V> {
     public String getName();
     public V get(K key);
     public Map<?  extends K, ?  extends V> getAll(Iterator<?  extends K> keys);
     public  boolean isPresent(K key);
     public  void put(K key, V value);
     public  void putAll(Map<?  extends K, ?  extends V> entries);
     public  void invalidate(K key);
     public  void invalidateAll(Iterator<?  extends K> keys);
     public  void invalidateAll();
     public  boolean isEmpty();
     public  int size();
     public  void clear();
     public Map<?  extends K, ?  extends V> asMap();
}
这个简单的Cache实现只是对HashMap的封装,之所以选择HashMap而不是ConcurrentHashMap是因为在ConcurrentHashMap无法实现getAll()方法;并且这里所有的操作我都加锁了,因而也不需要ConcurrentHashMap来保证线程安全问题;为了提升性能,我使用了读写锁,以提升并发查询性能。因为代码比较简单,所以把所有代码都贴上了(懒得整理了。。。。)。
public  class CacheImpl<K, V>  implements Cache<K, V> {
     private  final String name;
     private  final HashMap<K, V> cache;
     private  final ReadWriteLock lock =  new ReentrantReadWriteLock();
     private  final Lock readLock = lock.readLock();
     private  final Lock writeLock = lock.writeLock();
    
     public CacheImpl(String name) {
         this.name = name;
        cache =  new HashMap<K, V>();
    }
    
     public CacheImpl(String name,  int initialCapacity) {
         this.name = name;
        cache =  new HashMap<K, V>(initialCapacity);
    }
    
     public String getName() {
         return name;
    }

     public V get(K key) {
        readLock.lock();
         try {
             return cache.get(key);
        }  finally {
            readLock.unlock();
        }
    }

     public Map<?  extends K, ?  extends V> getAll(Iterator<?  extends K> keys) {
        readLock.lock();
         try {
            Map<K, V> map =  new HashMap<K, V>();
            List<K> noEntryKeys =  new ArrayList<K>();
             while(keys.hasNext()) {
                K key = keys.next();
                 if(isPresent(key)) {
                    map.put(key, cache.get(key));
                }  else {
                    noEntryKeys.add(key);
                }
            }
            
             if(!noEntryKeys.isEmpty()) {
                 throw  new CacheEntriesNotExistException( this, noEntryKeys);
            }
            
             return map;
        }  finally {
            readLock.unlock();
        }
    }

     public  boolean isPresent(K key) {
        readLock.lock();
         try {
             return cache.containsKey(key);
        }  finally {
            readLock.unlock();
        }
    }

     public  void put(K key, V value) {
        writeLock.lock();
         try {
            cache.put(key, value);
        }  finally {
            writeLock.unlock();
        }
    }

     public  void putAll(Map<?  extends K, ?  extends V> entries) {
        writeLock.lock();
         try {
            cache.putAll(entries);
        }  finally {
            writeLock.unlock();
        }
    }

     public  void invalidate(K key) {
        writeLock.lock();
         try {
             if(!isPresent(key)) {
                 throw  new CacheEntryNotExistsException( this, key);
            }
            cache.remove(key);
        }  finally {
            writeLock.unlock();
        }
    }

     public  void invalidateAll(Iterator<?  extends K> keys) {
        writeLock.lock();
         try {
            List<K> noEntryKeys =  new ArrayList<K>();
             while(keys.hasNext()) {
                K key = keys.next();
                 if(!isPresent(key)) {
                    noEntryKeys.add(key);
                }
            }
             if(!noEntryKeys.isEmpty()) {
                 throw  new CacheEntriesNotExistException( this, noEntryKeys);
            }
            
             while(keys.hasNext()) {
                K key = keys.next();
                invalidate(key);
            }
        }  finally {
            writeLock.unlock();
        }
    }

     public  void invalidateAll() {
        writeLock.lock();
         try {
            cache.clear();
        }  finally {
            writeLock.unlock();
        }
    }

     public  int size() {
        readLock.lock();
         try {
             return cache.size();
        }  finally {
            readLock.unlock();
        }
    }

     public  void clear() {
        writeLock.lock();
         try {
            cache.clear();
        }  finally {
            writeLock.unlock();
        }
    }

     public Map<?  extends K, ?  extends V> asMap() {
        readLock.lock();
         try {
             return  new ConcurrentHashMap<K, V>(cache);
        }  finally {
            readLock.unlock();
        }
    }

     public  boolean isEmpty() {
        readLock.lock();
         try {
             return cache.isEmpty();
        }  finally {
            readLock.unlock();
        }
    }

}
其简单的使用用例如下: 
    @Test
     public  void testCacheSimpleUsage() {
        Book uml = bookFactory.createUMLDistilled();
        Book derivatives = bookFactory.createDerivatives();
        
        String umlBookISBN = uml.getIsbn();
        String derivativesBookISBN = derivatives.getIsbn();
        
        Cache<String, Book> cache = cacheFactory.create("book-cache");
        cache.put(umlBookISBN, uml);
        cache.put(derivativesBookISBN, derivatives);
        
        Book fetchedBackUml = cache.get(umlBookISBN);
        System.out.println(fetchedBackUml);
        
        Book fetchedBackDerivatives = cache.get(derivativesBookISBN);
        System.out.println(fetchedBackDerivatives);
    }

相关文章
|
7月前
|
缓存 算法 Java
Caffeine Cache~高性能 Java 本地缓存之王
Caffeine Cache~高性能 Java 本地缓存之王
395 1
|
7月前
|
IDE Oracle Java
java基础教程(1)-Java概述和相关名词解释
【4月更文挑战第1天】Java是1995年Sun Microsystems发布的高级编程语言,以其跨平台特性著名。它介于编译型和解释型语言之间,通过JVM实现“一次编写,到处运行”。Java有SE、EE和ME三个版本,分别针对标准、企业及嵌入式应用。JVM是Java虚拟机,确保代码在不同平台无需重编译。JRE是运行环境,而JDK包含开发工具。要安装Java开发环境,可从Oracle官网下载JDK,设置JAVA_HOME环境变量并添加到PATH。
|
7月前
|
网络协议 算法 Java
【Java网络编程】网络编程概述、UDP通信(DatagramPacket 与 DatagramSocket)
【Java网络编程】网络编程概述、UDP通信(DatagramPacket 与 DatagramSocket)
86 3
|
3月前
|
安全 Java API
Java 18 概述:新特性一览
Java 18 作为 Java 平台的最新版本,引入了多项令人振奋的新特性和改进,包括模式匹配、记录类型、流库改进、外部函数与内存 API 以及并发处理增强。这些新功能不仅提升了开发者的生产力,还显著增强了 Java 的性能和安全性。本文将详细介绍 Java 18 的主要新特性,并通过代码示例帮助读者更好地理解和应用这些功能。
|
4月前
|
缓存 NoSQL Java
【Azure Redis 缓存 Azure Cache For Redis】Redis出现 java.net.SocketTimeoutException: Read timed out 异常
【Azure Redis 缓存 Azure Cache For Redis】Redis出现 java.net.SocketTimeoutException: Read timed out 异常
|
4月前
|
存储 Oracle Java
01 Java概述基础与计算机基础(DOS+进制+原码反码补码)
01 Java概述基础与计算机基础(DOS+进制+原码反码补码)
51 17
|
4月前
|
存储 算法 Oracle
19 Java8概述(Java8概述+lambda表达式+函数式接口+方法引用+Stream+新时间API)
19 Java8概述(Java8概述+lambda表达式+函数式接口+方法引用+Stream+新时间API)
75 8
|
4月前
|
Java 数据安全/隐私保护
09 Java面向对象三大特征(概述)
09 Java面向对象三大特征(概述)
77 4
|
6月前
|
设计模式 算法 Java
Java设计模式:核心概述(一)
Java设计模式:核心概述(一)
|
7月前
|
安全 Java 编译器
Java第一课——Java详细图文概述
Java第一课——Java详细图文概述
63 6
Java第一课——Java详细图文概述