Spark on Yarn: Cluster模式Scheduler实现

简介:

背景

Spark on Yarn分yarn-cluster和yarn-client两种模式。
本文通过Cluster模式的TaskScheduler实现入手,梳理一遍spark on yarn的大致实现逻辑。

前提我对两种模式以及yarn任务的整体运行逻辑不是很清楚。

主体逻辑

cluster模式中,使用的TaskScheduler是YarnClusterScheduler
它继承了默认使用的TaskSchedulerImpl类,额外在postStartHook方法里,唤醒了ApplicationMaster类的设置sparkcontext的方法。
ApplicationMaster相当于是spark在yarn上的AM,内部的YarnRMClient类,负责向RM注册和注销AM,以及拿到attemptId。注册AM之后,得到一个可以申请/释放资源的YarnAllocationHandler类,从而可以维护container与executor之间的关系。

下节具体介绍几个主要类的实现逻辑。

具体实现

AM

ApplicationMaster,通过YarnRMClient来完成自己的注册和注销。

AM的启动方式

/**
 * This object does not provide any special functionality. It exists so that it's easy to tell
 * apart the client-mode AM from the cluster-mode AM when using tools such as ps or jps.
 */
object ExecutorLauncher {

  def main(args: Array[String]) = {
    ApplicationMaster.main(args)
  }

}

main里面调用AM的run方法:

  def main(args: Array[String]) = {
    SignalLogger.register(log)
    val amArgs = new ApplicationMasterArguments(args)
    SparkHadoopUtil.get.runAsSparkUser { () =>
      master = new ApplicationMaster(amArgs, new YarnRMClientImpl(amArgs))
      System.exit(master.run())
    }
  }

如果AM的启动参数里有用户自己定义的类,则是Driver模式,即cluster模式。用户自己定义的类里面带了spark driver,会在单独一个线程里启动。这也是cluster模式与client模式的区别,用户实现了driver vs 用户只是提交app。

run方法里
1. 如果不是Driver模式,执行runExecutorLauncher逻辑:
启动后,执行registerAM,里面new了YarnAllocator的实现,调用allocateResources,申请并执行container。同时,启动一个reporter线程,每隔一段时间调用YarnAllocator的allocateResources方法,或汇报有太多executor fail了。
2. 如果是Driver模式,执行runDriver逻辑:
也是执行registerAM,但是之前需要反射执行jar包里用户定义的driver类。

YarnAllocator

YarnAllocator负责向yarn申请和释放containers,维护containe、executor相关关系,有一个线程池。申请到container之后,在container里执行ExecutorRunnable。需要子类实现的是申请和释放这两个方法:

protected def allocateContainers(count: Int, pending: Int): YarnAllocateResponse
protected def releaseContainer(container: Container): Unit

YarnAllocationHandler继承了YarnAllocator。

  1. allocateContainers方法:
    Yarn api里提供ResourceRequest这个类,里面包含了一个app向RM索要不同container的信息,包括机器名/机架名,cpu和mem资源数,container数,优先级,locality是否放松。然后组成AllocateRequest类,代表AM向RM从集群里获得resource。调用ApplicationMasterProtocal的allocate(AllocateRequest),由AM**向RM发起资源请求**。
  2. releaseContainer方法:
    每次把需要release的container记录下来。在每次allocateContainers调用的时候,
    会往AllocateRequest里addAllReleases(releasedContainerList),在请求资源的时候顺便把历史资源释放掉。

ExecutorRunnable与Yarn的关系:
1. 向ContainerManager建立连接,让cm来startContainer。
2. ContainerLaunchContext包含了yarn的NodeManager启动一个container需要的所有信息。ExecutorRunnable会构建这个container申请信息。
可以参考这段启动逻辑:

def startContainer = {
    logInfo("Setting up ContainerLaunchContext")

    val ctx = Records.newRecord(classOf[ContainerLaunchContext])
      .asInstanceOf[ContainerLaunchContext]

    ctx.setContainerId(container.getId())
    ctx.setResource(container.getResource())
    val localResources = prepareLocalResources
    ctx.setLocalResources(localResources)

    val env = prepareEnvironment
    ctx.setEnvironment(env)

    ctx.setUser(UserGroupInformation.getCurrentUser().getShortUserName())

    val credentials = UserGroupInformation.getCurrentUser().getCredentials()
    val dob = new DataOutputBuffer()
    credentials.writeTokenStorageToStream(dob)
    ctx.setContainerTokens(ByteBuffer.wrap(dob.getData()))

    val commands = prepareCommand(masterAddress, slaveId, hostname, executorMemory, executorCores,
      appAttemptId, localResources)
    logInfo("Setting up executor with commands: " + commands)
    ctx.setCommands(commands)

    ctx.setApplicationACLs(YarnSparkHadoopUtil.getApplicationAclsForYarn(securityMgr))

    // If external shuffle service is enabled, register with the Yarn shuffle service already
    // started on the NodeManager and, if authentication is enabled, provide it with our secret
    // key for fetching shuffle files later
    if (sparkConf.getBoolean("spark.shuffle.service.enabled", false)) {
      val secretString = securityMgr.getSecretKey()
      val secretBytes =
        if (secretString != null) {
          // This conversion must match how the YarnShuffleService decodes our secret
          JavaUtils.stringToBytes(secretString)
        } else {
          // Authentication is not enabled, so just provide dummy metadata
          ByteBuffer.allocate(0)
        }
      ctx.setServiceData(Map[String, ByteBuffer]("spark_shuffle" -> secretBytes))
    }

    // Send the start request to the ContainerManager
    val startReq = Records.newRecord(classOf[StartContainerRequest])
    .asInstanceOf[StartContainerRequest]
    startReq.setContainerLaunchContext(ctx)
    cm.startContainer(startReq)
  }

值得注意的是setServiceData方法,如果在node manager上启动了external shuffle service。Yarn的AuxiliaryService支持在NodeManager上启动辅助服务。spark有一个参数spark.shuffle.service.enabled来设置该服务是否被启用,我看的1.2.0版本里貌似没有服务的实现代码。

Executor

此外,从ExecutorRunnableUtil的prepareCommand方法可以得知,ExecutorRunnable通过命令行启动了CoarseGrainedExecutorBackend进程,与粗粒度的mesos模式和standalone模式一致,task最终落到CoarseGrainedExecutorBackend里面执行。

全文完:)

目录
相关文章
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
487 6
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
283 2
|
8月前
|
SQL 分布式计算 资源调度
Dataphin功能Tips系列(48)-如何根据Hive SQL/Spark SQL的任务优先级指定YARN资源队列
如何根据Hive SQL/Spark SQL的任务优先级指定YARN资源队列
326 4
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
本文详细解析了 Apache Spark 的两种常见部署模式:Standalone 和 YARN。Standalone 模式自带轻量级集群管理服务,适合小规模集群;YARN 模式与 Hadoop 生态系统集成,适合大规模生产环境。文章通过示例代码展示了如何在两种模式下运行 Spark 应用程序,并总结了两者的优缺点,帮助读者根据需求选择合适的部署模式。
533 3
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
【10月更文挑战第5天】随着大数据处理需求的增长,Apache Spark 成为了广泛采用的大数据处理框架。本文详细解析了 Spark Standalone 与 YARN 两种常见部署模式的区别,并通过示例代码展示了如何在不同模式下运行 Spark 应用程序。Standalone 模式自带轻量级集群管理,适合小规模集群或独立部署;YARN 则作为外部资源管理器,能够与 Hadoop 生态系统中的其他应用共享资源,更适合大规模生产环境。文章对比了两者的资源管理、部署灵活性、扩展性和集成能力,帮助读者根据需求选择合适的部署模式。
214 1
|
5月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
300 0
|
8月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
393 79
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
861 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
239 0