如何看待和学习人工智能?这是五位哈佛博士生的AMA

简介:
本文来自AI新媒体量子位(QbitAI)

最近,五位哈佛的在读博士生集体来到著名社区reddit,展开一场围绕人工智能和认知科学的AMA(Ask Me Anything)。

简单介绍一下这几位博士生:Rockwell Anyoha来自分子生物学系;Dana Boebinger、Kevin Sitek来自哈佛-麻省理工语音和听力项目;Adam Riesselman、William Yuan来自医学院,他们使用机器学习等展开相关研究。

这次总时长两个小时的在线交流,得到了reddit网友的热情参与,量子位从中节选了一些精彩的问答进行了编译摘录。如下。

提问:我们需要担心人工智能和自动化发展速度过快么?

回答:我们应该为生活在充满AI和自动化的世界做好准备。许多工作在不久的将来会变得过时。既然我们知道这天一定会到来,整个社会就应该制定有效的政策。

伊隆·马斯克的“AI末世论”遭到很多人反对,特别是AI从业者。正如吴恩达所说:“我认为工作岗位流失是一个巨大的问题,但我希望大家可以专注于解决这个问题,而不是关心那些科幻小说一样的东西”。

提问:AI会在哪个领域(医疗、金融等)率先立足,为什么?

回答:AI已经在医学图像处理领域得到了长足的进步。例如,在通过图片识别皮肤癌这件事上,人工智能机器已经达到了人类医生的水平。

金融和银行部门也会更快的实现自动化。通常股票的购买是一个复杂的决策过程,最终这些交易将由各种数据决定,算法正在取代人的决策。

但我们仍然不知道人工智能会如何影响我们的经济和工作,只有时间会说明一切。

提问:机器学习是当前的热门话题。AI的下一个大事件会是什么?

回答:从纯机器学习的角度来说,无监督学习会是下一个大事。研究人员现在给机器“喂”数据的方式被称为监督学习,这些数据不但知道类型(例如图片),而且还打了标签(例如图中是一只猫)。监督学习领域,有很多伟大的成功。

如何让机器自学成才?这就是无监督学习要干的事情。一个婴儿出生后,父母不必教授每一件事情,婴儿会自己学习。当然无监督学习是一个棘手的事情,AI研究者正在为此而努力。比方Yann LeCun最近就一直在讲无监督学习。

提问:你们可能低估了无监督学习,在这个AI问题上已经研究了几十年,但没有任何进展。这不是一个新的研究焦点。

回答:感谢回复。我们这里想说的是无监督学习的具体算法框架。生成模型被用来解决这个问题,因为它可以某种方式探测数据中潜在的变量,而且可以生成新的数据。

以前曾经使用Wake-Sleep算法解决这个问题,但是并没有获得太大的成功。然后是限制玻尔兹曼机以及深度信念网络。但是这些技术在应用到现实世界时,都遇到了极大的挑战。

最近,变分自编码器和生成对抗网络等模型已经取得突破。使用这些模型可以快速、简单的对非结构化数据执行复杂的任务,包括创建人物素描、生成句子以及自动为图片着色等。

没错,人们在这个领域已经努力很久了。而通过上述新技术,我想我们正在接近一个新的领域——让机器自己了解我们的世界。

提问:你们觉得政府应该为AI制定什么具体的法律法规么?

回答:有个阿西莫夫机器人三定律。

第一定律:机器人不得伤害人类个体,或者目睹人类个体将遭受危险而袖手不管。

第二定律:机器人必须服从人给予它的命令,当该命令与第一定律冲突时例外。

第三定律:机器人在不违反第一、第二定律的情况下要尽可能保护自己的生存。

认真的说,应该有一些法律规范人工智能的应用,也许还需要一些机构进行代码评估,已确定人工智能是否会被用于不道德的领域。我脑子里想到那个无人车需要面对的“电车难题”:是否应该为了拯救10个人牺牲掉另外的1个人。

在这方面我们不是专家。

提问:最近Facebook的工程师关掉了机器学习的翻译程序,据说是因为这些AI创造了自己的语言。你们怎么看待这件事?(查看相关报道点击这里

回答:我觉得这没有什么可怕的。

机器学习中的一个大问题,就是生成与人类相似的反应或者反馈。一个解决之道是让机器生成人类的句子,然后你告诉机器它干得好不好。这个方式非常困难,因为耗时费力。即便是能够自学的算法,也需要上百万的语料才有可能正确工作。另一条道路是让一台机器生成语句,另一台来判断是否符合人类的语言。

Facebook的工作是想制造一台能够谈判协商的机器,但结果显示他们的方式不会奏效,所以关闭了这项研究。

提问:我对AI和机器学习感兴趣已经两年了。希望未来能有机会从事AI安全相关的工作。能给我一些建议么?我应该做什么活着学点什么?多谢!

回答:Google的人写过一篇非常有趣的文章,来说明AI安全问题。他们给出了五个要点:

1、避免有害副作用:机器人如何才能在追求效率的同时避免造成连带损伤?

2、避免激励机制漏洞:如何才能防止机器人投机取巧?

3、弹性监督:如何让机器人能自主验证目标,正确完成任务,而不需要让用户花极高的时间成本与机器人反复核实?

4、安全探索:如何避免机器人在探索陌生环境、学习新技能时对人类造成损害?

5、切换环境后的可靠性:我们如何能保证机器人在切换环境后,能将已经习得的技能无缝迁移到新环境中,避免造成不必要的麻烦?

另外,建议你更多的熟悉算法,知道机器如何工作。

提问:未来想要从事AI,现在最佳路线是什么?我现在就读于社区大学,正在攻读一个计算机科学的学士学位。

回答:坦白讲,我认为想要搞好机器学习,需要有很强的数据背景。机器学习的本质上是统计学,只不过披上了花哨的算法外衣。这个领域迅速演变,就像狂野的西部,所以也有人形容机器学习是:牛仔统计学。但我认为机器学习被夸大了,基本的统计学就能解决很多问题。

我觉得你也应该在其他自己喜欢的领域继续研究。如果你不理解手上数据的意思,你也不可能进行很好的建模。我们这些人都会研究一个具体的问题,在他们感兴趣的领域,应用机器学习的方法。当然,你也可以选择搞纯粹的机器学习研究。

总之,数学和你感兴趣的领域,都很重要。

更多问答内容,可以访问这个网址:

https://www.reddit.com/r/IAmA/comments/6qbw5f/we_are_phd_students_from_harvard_university_here/

 参与答问的William Yuan

最后,他们还给出一些建议:

  • 编程入门可以借助这个网站CodeAcademy

    地址:https://www.codecademy.com/

  • 进阶学习需要Python编程语言

    地址:https://www.edx.org/course/introduction-computer-science-mitx-6-00-1x-10

  • 以及计算机科学入门课程(CS50)

    地址:https://www.edx.org/course/introduction-computer-science-harvardx-cs50x

  • 概率入门课程(Stat110)

    地址:https://projects.iq.harvard.edu/stat110/about

  • 机器学习入门课程

    地址:https://www.coursera.org/learn/machine-learning

  • 不知道如何着手使用数据进行预测?以及想跟别人比试比试机器学习水平?可以试试参加Kaggle竞赛。

    地址:https://www.kaggle.com/

  • 推荐一本最棒的机器学习教科书:《Machine Learning: A Probabilistic Perspective》

    地址:https://www.cs.ubc.ca/~murphyk/MLbook/

  • Sklearn:真正伟大的机器学习算法,开箱即用

    地址:http://scikit-learn.org/stable/

  • TensorFlow:先进的机器学习工具包,可以用来构建自己的算法

    地址:https://www.tensorflow.org/tutorials/

    教程:https://github.com/aymericdamien/TensorFlow-Examples

【完】

本文作者:问耕 
原文发布时间:2017-07-30
相关文章
|
6月前
|
机器学习/深度学习 人工智能 算法
普通人怎么学人工智能?这些隐藏学习秘籍大揭秘,生成式人工智能认证(GAI认证)来助力
在人工智能(AI)快速发展的今天,普通人学习AI已成为必然趋势。本文从明确学习目标与路径、利用多元化资源、注重实践应用、关注GAI认证及持续自我提升五个方面,为普通人提供系统化的AI学习指南。通过设定目标、学习编程语言、参与项目实践和获取专业认证,普通人可逐步掌握AI技能,在未来职场中占据优势并开启智能时代新篇章。
|
6月前
|
人工智能 算法 安全
深度:善用人工智能推动高等教育学习、教学与治理的深层变革
本文探讨人工智能技术与高等教育深度融合带来的系统性变革,从学习进化、教学革新与治理重构三个维度展开。生成式AI作为技术前沿代表,正通过标准化认证体系(如培生的Generative AI Foundations)提升职场人士、教育者及学生的能力。文章强调批判性思维、高阶认知能力与社交能力的培养,主张教师从经验主导转向数据驱动的教学模式,并提出构建分布式治理结构以适应技术迭代,最终实现人机协同的教育新生态,推动高等教育在智能时代焕发人性光辉。
|
11月前
|
人工智能 自然语言处理 搜索推荐
人工智能与教育:个性化学习的未来
【10月更文挑战第31天】在科技飞速发展的今天,人工智能(AI)正深刻改变教育领域,尤其是个性化学习的兴起。本文探讨了AI如何通过智能分析、个性化推荐、智能辅导和虚拟现实技术推动个性化学习,分析了其带来的机遇与挑战,并展望了未来的发展前景。
|
12月前
|
人工智能 搜索推荐 语音技术
人工智能与未来教育:重塑学习方式的双刃剑
在21世纪,人工智能(AI)技术正以前所未有的速度发展,深刻影响着社会的各个方面,其中包括教育领域。本文探讨了AI如何改变传统教育模式,提出其既带来积极影响也伴随着挑战的观点。通过分析具体案例和数据,文章旨在启发读者思考如何在保留人类教师不可替代价值的同时,有效利用AI技术优化教育体验。
|
12月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与未来教育:重塑学习体验
【10月更文挑战第20天】 在21世纪的今天,人工智能(AI)技术正以前所未有的速度改变着我们的生活、工作和学习方式。本文探讨了AI如何深刻影响未来教育的各个方面,从个性化学习路径的设计到智能辅导系统的开发,再到虚拟现实(VR)和增强现实(AR)技术在学习中的应用。通过分析这些变革,我们不仅能够预见一个更加高效、互动和包容的教育未来,而且还能理解这一过程中所面临的挑战和机遇。文章强调了持续创新的重要性,并呼吁教育工作者、技术开发者和政策制定者共同努力,以确保技术进步惠及每一个学习者。
255 2
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在教育中的创新应用:个性化学习的未来
【9月更文挑战第18天】人工智能在教育中的创新应用正在深刻改变着我们的教学方式和学习体验。从个性化学习方案的制定到智能化辅导与反馈,从多元化学习资源的推荐到自动化评分与智能考试系统,AI技术正在为教育领域带来前所未有的变革。面对这一变革,我们需要以开放和批判的态度拥抱它,共同探索AI时代教育的无限可能,为每一个学习者创造更美好的未来。
765 12
|
数据采集 人工智能 数据可视化
【2023年电工杯竞赛】B题 人工智能对大学生学习影响的评价 数学建模方案和python代码
本文介绍了2023年电工杯竞赛B题的数学建模方案和Python代码实现,详细阐述了如何分析调查问卷数据,建立评价指标体系,构建数学模型评估人工智能对大学生学习的影响,并提供了数据预处理、特征编码、可视化分析等代码示例。
477 0
【2023年电工杯竞赛】B题 人工智能对大学生学习影响的评价 数学建模方案和python代码
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】学习人工智能需要学习哪些课程,从入门到进阶到高级课程区分
基于人工智能的多学科特性和其广泛的应用领域,学习这一技术涉及从基础理论到实践应用的各个层面。入门阶段应重点掌握数学基础、编程语言学习以及数据结构和算法等。进阶阶段需要深入机器学习、深度学习以及自然语言处理等专题。高级课程则包括专业核心课程、认知心理学与神经科学基础以及计算机图形学等课程
794 1
|
机器学习/深度学习 人工智能 算法
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
795 0
|
机器学习/深度学习 人工智能 缓存
人工智能平台PAI使用问题之如何配置学习任务
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

热门文章

最新文章