今年的DTCC大会上,MongoDB中国的唐总带来了《如何在3.0实现7-10倍性能提升》。演讲时顺便倒了点苦水:一些其它数据库喜欢拿MongoDB进行性能PK,但MongoDB之前的开发一直没有怎么关注性能这块,以前也没有发布过官方的性能测试数据,所以结果可想而知。
但是,MongoDB 3.0带来了新的WiredTiger存储引擎,不再像以前(MMAPv1引擎)那样受制于OS内存映射,性能有7-10倍的提升。
这里有一份MongoDB的官方性能测试报告,根据这份测试报告,WiredTiger的性能提升主要表现在数据压缩和并行加载上。
http://www.mongoing.com/archives/862
由于WiredTiger不是默认引擎(根据唐总的说法,以后的版本会考虑作为默认引擎) 。我之前的那篇测试,对比的还是MongoDB的老引擎MMAPv1。
http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=20726500&id=4960138
下面用同样的测试方法看看WiredTiger引擎的表现(嫌测试过程写得太长的话,可以直接跳到后面看测试总结)。
1. MongoDB WiredTiger引擎的测试
1)启用MongoDB的WiredTiger引擎
点击(此处)折叠或打开
- -bash-4.1$ mongod --dbpath /data/db2 --storageEngine wiredTiger
- 2015-04-18T07:51:26.647+0800 I STORAGE [initandlisten] wiredtiger_open config: create,cache_size=1G,session_max=20000,eviction=(threads_max=4),statistics=(fast),log=(enabled=true,archive=true,path=journal,compressor=snappy),checkpoint=(wait=60,log_size=2GB),statistics_log=(wait=0),
- 2015-04-18T07:51:27.561+0800 I CONTROL [initandlisten] MongoDB starting : pid=21287 port=27017 dbpath=/data/db2 64-bit host=hanode1
- 2015-04-18T07:51:27.563+0800 I CONTROL [initandlisten] db version v3.0.2
- 2015-04-18T07:51:27.563+0800 I CONTROL [initandlisten] git version: 6201872043ecbbc0a4cc169b5482dcf385fc464f
- 2015-04-18T07:51:27.564+0800 I CONTROL [initandlisten] OpenSSL version: OpenSSL 1.0.1e-fips 11 Feb 2013
- 2015-04-18T07:51:27.564+0800 I CONTROL [initandlisten] build info: Linux ip-10-171-120-213 2.6.32-220.el6.x86_64 #1 SMP Wed Nov 9 08:03:13 EST 2011 x86_64 BOOST_LIB_VERSION=1_49
- 2015-04-18T07:51:27.564+0800 I CONTROL [initandlisten] allocator: tcmalloc
- 2015-04-18T07:51:27.564+0800 I CONTROL [initandlisten] options: { storage: { dbPath: "/data/db2", engine: "wiredTiger" } }
- 2015-04-18T07:51:27.595+0800 I NETWORK [initandlisten] waiting for connections on port 27017
2)加载数据
点击(此处)折叠或打开
- -bash-4.1$ time -p mongoimport --type json --collection json_tables --db benchmark /dev/null 2>/dev/null
- real 8.53
- user 7.99
- sys 4.14
点击(此处)折叠或打开
- [root@hanode1 ~]# top
- top - 08:19:09 up 7 days, 11:19, 5 users, load average: 0.48, 0.13, 0.04
- Tasks: 151 total, 1 running, 150 sleeping, 0 stopped, 0 zombie
- Cpu(s): 24.9%us, 9.3%sy, 0.0%ni, 56.8%id, 6.2%wa, 0.5%hi, 2.4%si, 0.0%st
- Mem: 1019320k total, 949576k used, 69744k free, 82976k buffers
- Swap: 2064376k total, 62092k used, 2002284k free, 215228k cached
- PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
- 24190 postgres 20 0 549m 219m 3312 S 114.7 22.1 0:08.94 mongoimport
- 21287 postgres 20 0 634m 331m 4748 S 34.6 33.3 0:44.48 mongod
3)建索引
点击(此处)折叠或打开
- -bash-4.1$ echo "db.json_tables.ensureIndex( { \"name\": 1})" |time -p mongo benchmark >/dev/null
- real 1.25
- user 0.03
- sys 0.03
- -bash-4.1$ echo "db.json_tables.ensureIndex( { \"type\": 1})" |time -p mongo benchmark >/dev/null
- real 0.45
- user 0.02
- sys 0.02
- -bash-4.1$ echo "db.json_tables.ensureIndex( { \"brand\": 1})" |time -p mongo benchmark >/dev/null
- real 0.37
- user 0.05
- sys 0.03
4)查看存储空间大小
点击(此处)折叠或打开
- -bash-4.1$ mongo benchmark
- MongoDB shell version: 3.0.2
- connecting to: benchmark
- > db.json_tables.stats()
- {
- "ns" : "benchmark.json_tables",
- "count" : 100001,
- "size" : 266284846,
- "avgObjSize" : 2662,
- "storageSize" : 43167744,
- "capped" : false,
- "wiredTiger" : {
- "metadata" : {
- "formatVersion" : 1
- },
- "creationString" : "allocation_size=4KB,app_metadata=(formatVersion=1),block_allocation=best,block_compressor=snappy,cache_resident=0,checkpoint=(WiredTigerCheckpoint.2=(addr=\"01e208e781e4d41e9d38e208e881e4369503e3e208e981e446480254808080e402928fc0e40291cfc0\",order=2,time=1429314987,size=43118592,write_gen=9063)),checkpoint_lsn=(2,40610048),checksum=uncompressed,collator=,columns=,dictionary=0,format=btree,huffman_key=,huffman_value=,id=5,internal_item_max=0,internal_key_max=0,internal_key_truncate=,internal_page_max=4KB,key_format=q,key_gap=10,leaf_item_max=0,leaf_key_max=0,leaf_page_max=32KB,leaf_value_max=1MB,memory_page_max=10m,os_cache_dirty_max=0,os_cache_max=0,prefix_compression=0,prefix_compression_min=4,split_deepen_min_child=0,split_deepen_per_child=0,split_pct=90,value_format=u,version=(major=1,minor=1)",
- "type" : "file",
- "uri" : "statistics:table:collection-2--333628209475642491",
- "LSM" : {
- "bloom filters in the LSM tree" : 0,
- "bloom filter false positives" : 0,
- "bloom filter hits" : 0,
- "bloom filter misses" : 0,
- "bloom filter pages evicted from cache" : 0,
- "bloom filter pages read into cache" : 0,
- "total size of bloom filters" : 0,
- "sleep for LSM checkpoint throttle" : 0,
- "chunks in the LSM tree" : 0,
- "highest merge generation in the LSM tree" : 0,
- "queries that could have benefited from a Bloom filter that did not exist" : 0,
- "sleep for LSM merge throttle" : 0
- },
- "block-manager" : {
- "file allocation unit size" : 4096,
- "blocks allocated" : 9066,
- "checkpoint size" : 43118592,
- "allocations requiring file extension" : 9046,
- "blocks freed" : 27,
- "file magic number" : 120897,
- "file major version number" : 1,
- "minor version number" : 0,
- "file bytes available for reuse" : 40960,
- "file size in bytes" : 43167744
- },
- "btree" : {
- "btree checkpoint generation" : 8,
- "column-store variable-size deleted values" : 0,
- "column-store fixed-size leaf pages" : 0,
- "column-store internal pages" : 0,
- "column-store variable-size leaf pages" : 0,
- "pages rewritten by compaction" : 0,
- "number of key/value pairs" : 0,
- "fixed-record size" : 0,
- "maximum tree depth" : 3,
- "maximum internal page key size" : 368,
- "maximum internal page size" : 4096,
- "maximum leaf page key size" : 3276,
- "maximum leaf page size" : 32768,
- "maximum leaf page value size" : 1048576,
- "overflow pages" : 0,
- "row-store internal pages" : 0,
- "row-store leaf pages" : 0
- },
- "cache" : {
- "bytes read into cache" : 267348602,
- "bytes written from cache" : 267938187,
- "checkpoint blocked page eviction" : 0,
- "unmodified pages evicted" : 0,
- "page split during eviction deepened the tree" : 0,
- "modified pages evicted" : 26,
- "data source pages selected for eviction unable to be evicted" : 3,
- "hazard pointer blocked page eviction" : 3,
- "internal pages evicted" : 0,
- "pages split during eviction" : 26,
- "in-memory page splits" : 6,
- "overflow values cached in memory" : 0,
- "pages read into cache" : 9005,
- "overflow pages read into cache" : 0,
- "pages written from cache" : 9063
- },
- "compression" : {
- "raw compression call failed, no additional data available" : 0,
- "raw compression call failed, additional data available" : 0,
- "raw compression call succeeded" : 0,
- "compressed pages read" : 9004,
- "compressed pages written" : 9020,
- "page written failed to compress" : 0,
- "page written was too small to compress" : 43
- },
- "cursor" : {
- "create calls" : 14,
- "insert calls" : 100001,
- "bulk-loaded cursor-insert calls" : 0,
- "cursor-insert key and value bytes inserted" : 266602485,
- "next calls" : 300006,
- "prev calls" : 1,
- "remove calls" : 0,
- "cursor-remove key bytes removed" : 0,
- "reset calls" : 100005,
- "search calls" : 0,
- "search near calls" : 0,
- "update calls" : 0,
- "cursor-update value bytes updated" : 0
- },
- "reconciliation" : {
- "dictionary matches" : 0,
- "internal page multi-block writes" : 2,
- "leaf page multi-block writes" : 28,
- "maximum blocks required for a page" : 345,
- "internal-page overflow keys" : 0,
- "leaf-page overflow keys" : 0,
- "overflow values written" : 0,
- "pages deleted" : 0,
- "page checksum matches" : 204,
- "page reconciliation calls" : 32,
- "page reconciliation calls for eviction" : 26,
- "leaf page key bytes discarded using prefix compression" : 0,
- "internal page key bytes discarded using suffix compression" : 9230
- },
- "session" : {
- "object compaction" : 0,
- "open cursor count" : 14
- },
- "transaction" : {
- "update conflicts" : 0
- }
- },
- "nindexes" : 4,
- "totalIndexSize" : 2826240,
- "indexSizes" : {
- "_id_" : 864256,
- "name_1" : 868352,
- "type_1" : 630784,
- "brand_1" : 462848
- },
- "ok" : 1
- }
5)数据查询
匹配9091条记录的查询:
点击( 此处 )折叠或打开
- -bash-4.1$ echo "db.json_tables.find({ brand: 'ACME'}).count()"|mongo benchmark
- MongoDB shell version: 3.0.2
- connecting to: benchmark
- 9091
- bye
- -bash-4.1$ echo "DBQuery.shellBatchSize = 10000000000;db.json_tables.find({ brand: 'ACME'})"|time -p mongo benchmark >/dev/null
- real 3.93
- user 3.56
- sys 0.11
看看top的资源占用。
点击( 此处 )折叠或打开
- Tasks: 158 total, 2 running, 156 sleeping, 0 stopped, 0 zombie
- Cpu(s): 22.6%us, 0.4%sy, 0.0%ni, 76.8%id, 0.0%wa, 0.0%hi, 0.2%si, 0.0%st
- Mem: 1019320k total, 793584k used, 225736k free, 61424k buffers
- Swap: 2064376k total, 64096k used, 2000280k free, 236052k cached
- PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
- 27969 postgres 20 0 752m 67m 9304 R 91.4 6.8 0:03.46 mongo
- 26391 postgres 20 0 610m 325m 11m S 1.0 32.7 0:10.95 mongod
为了排除大量数据处理的误导,下面执行一下0匹配的查询。
点击(此处)折叠或打开
- -bash-4.1$ echo "DBQuery.shellBatchSize = 10000000000;db.json_tables.find({ brand: 'ACME111'})"|time -p mongo benchmark >/dev/null
- real 0.07
- user 0.04
- sys 0.01
再试试0匹配的全表扫描。
点击(此处)折叠或打开
- -bash-4.1$ echo "db.json_tables.dropIndexes()"|mongo benchmark
- MongoDB shell version: 3.0.2
- connecting to: benchmark
- {
- "nIndexesWas" : 4,
- "msg" : "non-_id indexes dropped for collection",
- "ok" : 1
- }
- bye
- -bash-4.1$ echo "DBQuery.shellBatchSize = 10000000000;db.json_tables.find({ brand: 'ACME111'})"|time -p mongo benchmark >/dev/null
- real 0.14
- user 0.02
- sys 0.03
6)数据插入
先清数据
点击(此处)折叠或打开
- -bash-4.1$ echo "db.json_tables.drop()"|mongo benchmark
- MongoDB shell version: 3.0.2
- connecting to: benchmark
- true
- bye
插入数据
点击(此处)折叠或打开
- -bash-4.1$ time mongo benchmark --quiet sample_mongo_inserts.json >/dev/null
-
- real 1m31.420s
- user 0m30.832s
- sys 0m50.319s
并且由于MongoDB的控制台不允许插入大于4k的文档,最后插入的数据没有10万条。
点击(此处)折叠或打开
- -bash-4.1$ mongo benchmark
- MongoDB shell version: 3.0.2
- connecting to: benchmark
- > db.json_tables.count()
- 72728
下面看看插入时的系统负载
点击(此处)折叠或打开
- [root@hanode1 ~]# top
- top - 08:02:23 up 7 days, 11:02, 5 users, load average: 0.00, 0.02, 0.00
- Tasks: 154 total, 2 running, 152 sleeping, 0 stopped, 0 zombie
- Cpu(s): 3.3%us, 1.5%sy, 0.0%ni, 76.4%id, 0.0%wa, 0.0%hi, 18.8%si, 0.0%st
- Mem: 1019320k total, 888680k used, 130640k free, 83272k buffers
- Swap: 2064376k total, 62140k used, 2002236k free, 295144k cached
- PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
- 22470 postgres 20 0 753m 66m 9224 R 88.8 6.7 0:03.94 mongo
- 21287 postgres 20 0 634m 344m 11m S 22.3 34.6 0:12.53 mongod
其实WiredTiger引擎在插入上主要提升的是并发性能,MMAPv1引擎在并发时是简单粗暴的锁库模式,严重制约并发性能,CPU核心再多性能也上不去。而我的测试是单并发测试,所以看不出MMAPv1引擎的这个致命缺点。
2. 总结
以单并发时的服务端进程CPU消耗作为衡量指标,PG和WiredTiger的对比总结如下:
1)加载
WiredTiger的性能是PG的3倍(注)
2)插入
相差不大,WiredTiger小胜(注)
3)全表扫描(0匹配)
WiredTiger的性能是PG的4倍
4)单点索引扫描(0匹配)
PG的性能是WiredTiger的4倍
5)数据大小
PG的数据大小是WiredTiger的3倍
1)加载
WiredTiger的性能是PG的3倍(注)
2)插入
相差不大,WiredTiger小胜(注)
3)全表扫描(0匹配)
WiredTiger的性能是PG的4倍
4)单点索引扫描(0匹配)
PG的性能是WiredTiger的4倍
5)数据大小
PG的数据大小是WiredTiger的3倍
注意,以上加载和插入的这两个数据以单并发时的服务端进程CPU消耗作为衡量指标的,忽略了MongoDB客户端的高CPU消耗,实际场景中也有可能PG更快。之所以这样对比,是因为:
我们假设好的引擎可以在高并发时可以把负载均衡地分散到所有CPU核心上,对这样的引擎,在CPU成为瓶颈的场景中,单并发时的CPU实际占用时间可以作为一个重要的参考指标。
但是,服务端能不能在高并发时实现多CPU核心上的线性或近似线性的性能Scale UP还需看服务端(PG/MongoDB)的素质和具体使用场景。
最后,即使PG在加载和插入的PK上输了也很正常,因为PG是保障了ACID的,WiredTiger却有丢失数据的风险。
Journal 默认不会即时刷盘,系统宕机会丢失最多100MB Journal数据