GraphX实现N度关系

简介:

背景

本文给出了一个简单的计算图中每个点的N度关系点集合的算法,也就是N跳关系。

之前通过官方文档学习和理解了一下GraphX的计算接口。

N度关系

目标:
在N轮里,找到某一个点的N度关系的点集合。

实现思路:
1. 准备好边数据集,即”1 3”, “4, 1” 这样的点关系。使用GraphLoader 的接口load成Graph
2. 初始化每个Vertice的属性为空Map
3. 使用aggregateMessagesVerticeIDtotalRounds传播出度点上,出度点把收集到的信息合成一个大Map
4. 更新后的Vertice与原图进行”Join”,更新图中的变化过的点属性
5. 重复步骤3和4,最后输出更新了N轮之后的有关系的Vertice

spark-shell下可执行的代码:

import org.apache.spark._
import org.apache.spark.graphx._
import org.apache.spark.rdd.RDD

val friendsGraph = GraphLoader.edgeListFile(sc, "data/friends.txt")
val totalRounds: Int = 3 // total N round
var targetVerticeID: Long = 6 // target vertice

// round one
var roundGraph = friendsGraph.mapVertices((id, vd) => Map())
var roundVertices = roundGraph.aggregateMessages[Map[Long, Integer]](
  ctx => {
    if (targetVerticeID == ctx.srcId) {
      // only the edge has target vertice should send msg
      ctx.sendToDst(Map(ctx.srcId -> totalRounds))
    }
  }, 
  _ ++ _
)

for (i <- 2 to totalRounds) {
  val thisRoundGraph = roundGraph.outerJoinVertices(roundVertices){ (vid, data, opt) => opt.getOrElse(Map[Long, Integer]()) }
  roundVertices = thisRoundGraph.aggregateMessages[Map[Long, Integer]](
    ctx => {
      val iterator = ctx.srcAttr.iterator
      while (iterator.hasNext) {
        val (k, v) = iterator.next
        if (v > 1) {
          val newV = v - 1
          ctx.sendToDst(Map(k -> newV))
          ctx.srcAttr.updated(k, newV)
        } else {
          // do output and remove this entry
        }
      }
    },
    (newAttr, oldAttr) => {
      if (oldAttr.contains(newAttr.head._1)) { // optimization to reduce msg
        oldAttr.updated(newAttr.head._1, 1) // stop sending this ever
      } else {
        oldAttr ++ newAttr
      }
    }
  )
}

val result = roundVertices.map(_._1).collect

数据和输出

2 1
4 1
1 2
6 3
7 3
7 6
6 7
3 7
4 3
1 6
6 1
Array(6, 1, 3, 7)

总结

实现的比较naive,还有许多可以优化的地方。

全文完 :)

目录
相关文章
|
4月前
|
机器学习/深度学习 数据采集 数据挖掘
Python实现深度神经网络gcForest(多粒度级联森林)分类模型
Python实现深度神经网络gcForest(多粒度级联森林)分类模型
Python实现深度神经网络gcForest(多粒度级联森林)分类模型
|
4月前
|
算法 Python
关联规则挖掘是一种在大型数据集中发现项集之间有趣关系的方法。
关联规则挖掘是一种在大型数据集中发现项集之间有趣关系的方法。
|
6月前
|
数据可视化 Java 数据挖掘
R语言Fama-French三因子模型实际应用:优化投资组合
R语言Fama-French三因子模型实际应用:优化投资组合
|
6月前
|
数据可视化 数据建模
R语言用线性混合效应(多水平/层次/嵌套)模型分析声调高低与礼貌态度的关系
R语言用线性混合效应(多水平/层次/嵌套)模型分析声调高低与礼貌态度的关系
|
6月前
|
数据挖掘 数据库
离线数仓6.0--- 数据仓库 ER模型-范式理论,维度模型、维度建模理论之事实表、维度建模理论之维度表
离线数仓6.0--- 数据仓库 ER模型-范式理论,维度模型、维度建模理论之事实表、维度建模理论之维度表
286 0
|
6月前
|
资源调度 算法 数据挖掘
变异系数法:一种强大的数据离散度度量工具
变异系数法:一种强大的数据离散度度量工具
280 0
变异系数法:一种强大的数据离散度度量工具
|
分布式计算 算法 大数据
白话Elasticsearch45-深入聚合数据分析之易并行聚合算法,三角选择原则,近似聚合算法
白话Elasticsearch45-深入聚合数据分析之易并行聚合算法,三角选择原则,近似聚合算法
103 0
|
并行计算
并行编程应用——计算文章相似度
并行编程应用——计算文章相似度
|
分布式计算 大数据 Spark
Spark 原理_逻辑图_窄依赖的分类_分析 | 学习笔记
快速学习 Spark 原理_逻辑图_窄依赖的分类_分析
155 0
Spark 原理_逻辑图_窄依赖的分类_分析 | 学习笔记
|
机器学习/深度学习 算法
②机器学习推荐算法之关联规则(Apriori)——支持度;置信度;提升度
机器学习推荐算法之关联规则(Apriori)——支持度;置信度;提升度
948 0
②机器学习推荐算法之关联规则(Apriori)——支持度;置信度;提升度
下一篇
无影云桌面