在linux内核中读写文件

简介: http://blog.csdn.net/tommy_wxie/article/details/8194276 1. 序曲在用户态,读写文件可以通过read和write这两个系统调用来完成(C库函数实际上是对系统调用的封装)。

http://blog.csdn.net/tommy_wxie/article/details/8194276

 

1. 序曲

在用户态,读写文件可以通过read和write这两个系统调用来完成(C库函数实际上是对系统调用的封装)。 但是,在内核态没有这样的系统调用,我们又该如何读写文件呢?

阅读Linux内核源码,可以知道陷入内核执行的是实际执行的是sys_read和sys_write这两个函数,但是这两个函数没有使用EXPORT_SYMBOL导出,也就是说其他模块不能使用。

在fs/open.c中系统调用具体实现如下(内核版本2.6.34.1):

SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, int, mode)
{
       long ret;

if (force_o_largefile()) flags |= O_LARGEFILE; ret = do_sys_open(AT_FDCWD, filename, flags, mode); /* avoid REGPARM breakage on x86: */ asmlinkage_protect(3, ret, filename, flags, mode); return ret; }

跟踪do_sys_open()函数,就会发现它主要使用了do_filp_open()函数该函数在fs/namei.c中,而在该文件中,filp_open函数也是调用了do_filp_open函数,并且接口和sys_open函数极为相似,调用参数也和sys_open一样,并且使用EXPORT_SYMBOL导出了,所以我们猜想该函数可以打开文件,功能和open一样。

使用同样的方法,找出了一组在内核操作文件的函数,如下:

功能

函数原型

打开文件

struct file *filp_open(const char *filename, int flags, int mode)

读文件

ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)

写文件

ssize_t vfs_write(struct file *file, const char __user *buf, size_t count, loff_t *pos)

关闭文件

int filp_close(struct file *filp, fl_owner_t id)

 

2. 内核空间与用户空间

在vfs_read和vfs_write函数中,其参数buf指向的用户空间的内存地址,如果我们直接使用内核空间的指针,则会返回-EFALUT。这是因为使用的缓冲区超过了用户空间的地址范围。一般系统调用会要求你使用的缓冲区不能在内核区。这个可以用set_fs()、get_fs()来解决。

在include/asm/uaccess.h中,有如下定义:

#define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })

#define KERNEL_DS MAKE_MM_SEG(0xFFFFFFFF)

#define USER_DS MAKE_MM_SEG(PAGE_OFFSET)

#define get_ds() (KERNEL_DS)

#define get_fs() (current->addr_limit)

#define set_fs(x) (current->addr_limit = (x))

 

如果使用,如下:

mm_segment_t fs = get_fs();

set_fs(KERNEL_FS);

//vfs_write();

vfs_read();

set_fs(fs);

 

详尽解释:系统调用本来是提供给用户空间的程序访问的,所以,对传递给它的参数(比如上面的buf),它默认会认为来自用户空间,在read或write()函数中,为了保护内核空间,一般会用get_fs()得到的值来和USER_DS进行比较,从而防止用户空间程序“蓄意”破坏内核空间;而现在要在内核空间使用系统调用,此时传递给read或write()的参数地址就是内核空间的地址了,在USER_DS之上(USER_DS ~ KERNEL_DS),如果不做任何其它处理,在write()函数中,会认为该地址超过了USER_DS范围,所以会认为是用户空间的“蓄意破坏”,从而不允许进一步的执行;为了解决这个问题; set_fs(KERNEL_DS);将其能访问的空间限制扩大到KERNEL_DS,这样就可以在内核顺利使用系统调用了!

 

在VFS的支持下,用户态进程读写任何类型的文件系统都可以使用read和write着两个系统调用,但是在linux内核中没有这样的系统调用我们如何操作文件呢?我们知道read和write在进入内核态之后,实际执行的是sys_read和sys_write,但是查看内核源代码,发现这些操作文件的函数都没有导出(使用EXPORT_SYMBOL导出),也就是说在内核模块中是不能使用的,那如何是好?

通过查看sys_open的源码我们发现,其主要使用了do_filp_open()函数,该函数在fs/namei.c中,而在改文件中,filp_open函数也是调用了do_filp_open函数,并且接口和sys_open函数极为相似,调用参数也和sys_open一样,并且使用EXPORT_SYMBOL导出了,所以我们猜想该函数可以打开文件,功能和open一样。使用同样的查找方法,我们找出了一组在内核中操作文件的函数,如下:

功能 函数原型
打开文件 struct file *filp_open(const char *filename,int flags, int mode)
读取文件 ssize_t vfs_read(struct file *file,char __user *buf, size_t count, loff_t *pos)
写文件 ssize_t vfs_write(struct file *file,const char __user *buf,size_t count, loff_t *pos)
关闭文件 int filp_close(struct file *filp, fl_owner_t id)

 

我们注意到在vfs_read和vfs_write函数中,其参数buf指向的用户空间的内存地址,如果我们直接使用内核空间的指针,则会返回-EFALUT。所以我们需要使用
set_fs()和get_fs()宏来改变内核对内存地址检查的处理方式,所以在内核空间对文件的读写流程为:

  1. mm_segment_tfs = get_fs();
  2. set_fs(KERNEL_FS);
  3. //vfs_write();
  4. vfs_read();
  5. set_fs(fs);

下面为一个在内核中对文件操作的例子:

#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
static charbuf[] ="你好"; static charbuf1[10]; int __inithello_init(void) { struct file *fp; mm_segment_t fs; loff_t pos;
printk(
"hello enter/n"); fp = filp_open("/home/niutao/kernel_file",O_RDWR | O_CREAT,0644); if (IS_ERR(fp)){ printk("create file error/n"); return -1; }
fs
= get_fs(); set_fs(KERNEL_DS); pos =0; vfs_write(fp, buf, sizeof(buf), &pos); pos =0; vfs_read(fp, buf1, sizeof(buf), &pos); printk("read: %s/n",buf1); filp_close(fp,NULL); set_fs(fs); return 0; }
void __exithello_exit(void) { printk("hello exit/n"); } module_init(hello_init); module_exit(hello_exit); MODULE_LICENSE("GPL");

 

目录
相关文章
|
16天前
|
安全 Linux 测试技术
Intel Linux 内核测试套件-LKVS介绍 | 龙蜥大讲堂104期
《Intel Linux内核测试套件-LKVS介绍》(龙蜥大讲堂104期)主要介绍了LKVS的定义、使用方法、测试范围、典型案例及其优势。LKVS是轻量级、低耦合且高代码覆盖率的测试工具,涵盖20多个硬件和内核属性,已开源并集成到多个社区CICD系统中。课程详细讲解了如何使用LKVS进行CPU、电源管理和安全特性(如TDX、CET)的测试,并展示了其在实际应用中的价值。
|
29天前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
76 15
|
1月前
|
Linux Shell 网络安全
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
本指南介绍如何利用 HTA 文件和 Metasploit 框架进行渗透测试。通过创建反向 shell、生成 HTA 文件、设置 HTTP 服务器和发送文件,最终实现对目标系统的控制。适用于教育目的,需合法授权。
78 9
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
|
1月前
|
Ubuntu Linux Go
golang编译成Linux可运行文件
本文介绍了如何在 Linux 上编译和运行 Golang 程序,涵盖了本地编译和交叉编译的步骤。通过这些步骤,您可以轻松地将 Golang 程序编译成适合 Linux 平台的可执行文件,并在目标服务器上运行。掌握这些技巧,可以提高开发和部署 Golang 应用的效率。
216 14
|
1月前
|
存储 NoSQL Linux
linux积累-core文件是干啥的
核心文件是Linux系统在程序崩溃时生成的重要调试文件,通过分析核心文件,开发者可以找到程序崩溃的原因并进行调试和修复。本文详细介绍了核心文件的生成、配置、查看和分析方法
92 6
|
1月前
|
存储 NoSQL Linux
linux之core文件如何查看和调试
通过设置和生成 core 文件,可以在程序崩溃时获取详细的调试信息。结合 GDB 等调试工具,可以深入分析 core 文件,找到程序崩溃的具体原因,并进行相应的修复。掌握这些调试技巧,对于提高程序的稳定性和可靠性具有重要意义。
272 6
|
1月前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
1月前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
1月前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
1月前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####