linux通用双向链表

简介: 1, 基于linux4.9版本#include #include #include #if 1 struct list_head { struct list_head *next, *prev; }; ...

1, 基于linux4.9版本

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#if 1  

struct list_head {                     
    struct list_head *next, *prev;  
};                                               
   
#define WRITE_ONCE(dst, src)    ((dst) = (src))
#define READ_ONCE(src)          (src)
#define LIST_POISON1            NULL
#define LIST_POISON2            NULL

#define container_of(ptr, type, member) \
    (type *)( (char *)ptr - offsetof(type, member) )

/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

#define LIST_HEAD_INIT(name) { &(name), &(name) }

#define LIST_HEAD(name) \
    struct list_head name = LIST_HEAD_INIT(name)

static inline void INIT_LIST_HEAD(struct list_head *list)
{
    WRITE_ONCE(list->next, list);
    list->prev = list;
}

/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new,
                  struct list_head *prev,
                  struct list_head *next)
{
    next->prev = new;
    new->next = next;
    new->prev = prev;
    WRITE_ONCE(prev->next, new);
}
#else
extern void __list_add(struct list_head *new,
                  struct list_head *prev,
                  struct list_head *next);
#endif

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
    __list_add(new, head, head->next);
}


/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
    __list_add(new, head->prev, head);
}

/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
    next->prev = prev;
    WRITE_ONCE(prev->next, next);
}

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty() on entry does not return true after this, the entry is
 * in an undefined state.
 */
#ifndef CONFIG_DEBUG_LIST
static inline void __list_del_entry(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
}

static inline void list_del(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
    entry->next = LIST_POISON1;
    entry->prev = LIST_POISON2;
}
#else
extern void __list_del_entry(struct list_head *entry);
extern void list_del(struct list_head *entry);
#endif

/**
 * list_replace - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace(struct list_head *old,
                struct list_head *new)
{
    new->next = old->next;
    new->next->prev = new;
    new->prev = old->prev;
    new->prev->next = new;
}

static inline void list_replace_init(struct list_head *old,
                    struct list_head *new)
{
    list_replace(old, new);
    INIT_LIST_HEAD(old);
}

/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 */
static inline void list_del_init(struct list_head *entry)
{
    __list_del_entry(entry);
    INIT_LIST_HEAD(entry);
}

/**
 * list_move - delete from one list and add as another's head
 * @list: the entry to move
 * @head: the head that will precede our entry
 */
static inline void list_move(struct list_head *list, struct list_head *head)
{
    __list_del_entry(list);
    list_add(list, head);
}

/**
 * list_move_tail - delete from one list and add as another's tail
 * @list: the entry to move
 * @head: the head that will follow our entry
 */
static inline void list_move_tail(struct list_head *list,
                  struct list_head *head)
{
    __list_del_entry(list);
    list_add_tail(list, head);
}

/**
 * list_is_last - tests whether @list is the last entry in list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_last(const struct list_head *list,
                const struct list_head *head)
{
    return list->next == head;
}

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static inline int list_empty(const struct list_head *head)
{
    return READ_ONCE(head->next) == head;
}

/**
 * list_empty_careful - tests whether a list is empty and not being modified
 * @head: the list to test
 *
 * Description:
 * tests whether a list is empty _and_ checks that no other CPU might be
 * in the process of modifying either member (next or prev)
 *
 * NOTE: using list_empty_careful() without synchronization
 * can only be safe if the only activity that can happen
 * to the list entry is list_del_init(). Eg. it cannot be used
 * if another CPU could re-list_add() it.
 */
static inline int list_empty_careful(const struct list_head *head)
{
    struct list_head *next = head->next;
    return (next == head) && (next == head->prev);
}

/**
 * list_rotate_left - rotate the list to the left
 * @head: the head of the list
 */
static inline void list_rotate_left(struct list_head *head)
{
    struct list_head *first;

    if (!list_empty(head)) {
        first = head->next;
        list_move_tail(first, head);
    }
}

/**
 * list_is_singular - tests whether a list has just one entry.
 * @head: the list to test.
 */
static inline int list_is_singular(const struct list_head *head)
{
    return !list_empty(head) && (head->next == head->prev);
}

static inline void __list_cut_position(struct list_head *list,
        struct list_head *head, struct list_head *entry)
{
    struct list_head *new_first = entry->next;
    list->next = head->next;
    list->next->prev = list;
    list->prev = entry;
    entry->next = list;
    head->next = new_first;
    new_first->prev = head;
}

/**
 * list_cut_position - cut a list into two
 * @list: a new list to add all removed entries
 * @head: a list with entries
 * @entry: an entry within head, could be the head itself
 *    and if so we won't cut the list
 *
 * This helper moves the initial part of @head, up to and
 * including @entry, from @head to @list. You should
 * pass on @entry an element you know is on @head. @list
 * should be an empty list or a list you do not care about
 * losing its data.
 *
 */
static inline void list_cut_position(struct list_head *list,
        struct list_head *head, struct list_head *entry)
{
    if (list_empty(head))
        return;
    if (list_is_singular(head) &&
        (head->next != entry && head != entry))
        return;
    if (entry == head)
        INIT_LIST_HEAD(list);
    else
        __list_cut_position(list, head, entry);
}

static inline void __list_splice(const struct list_head *list,
                 struct list_head *prev,
                 struct list_head *next)
{
    struct list_head *first = list->next;
    struct list_head *last = list->prev;

    first->prev = prev;
    prev->next = first;

    last->next = next;
    next->prev = last;
}

/**
 * list_splice - join two lists, this is designed for stacks
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice(const struct list_head *list,
                struct list_head *head)
{
    if (!list_empty(list))
        __list_splice(list, head, head->next);
}

/**
 * list_splice_tail - join two lists, each list being a queue
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice_tail(struct list_head *list,
                struct list_head *head)
{
    if (!list_empty(list))
        __list_splice(list, head->prev, head);
}

/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static inline void list_splice_init(struct list_head *list,
                    struct list_head *head)
{
    if (!list_empty(list)) {
        __list_splice(list, head, head->next);
        INIT_LIST_HEAD(list);
    }
}

/**
 * list_splice_tail_init - join two lists and reinitialise the emptied list
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * Each of the lists is a queue.
 * The list at @list is reinitialised
 */
static inline void list_splice_tail_init(struct list_head *list,
                     struct list_head *head)
{
    if (!list_empty(list)) {
        __list_splice(list, head->prev, head);
        INIT_LIST_HEAD(list);
    }
}

/**
 * list_entry - get the struct for this entry
 * @ptr:    the &struct list_head pointer.
 * @type:    the type of the struct this is embedded in.
 * @member:    the name of the list_head within the struct.
 */
#define list_entry(ptr, type, member) \
    container_of(ptr, type, member)

/**
 * list_first_entry - get the first element from a list
 * @ptr:    the list head to take the element from.
 * @type:    the type of the struct this is embedded in.
 * @member:    the name of the list_head within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_first_entry(ptr, type, member) \
    list_entry((ptr)->next, type, member)

/**
 * list_last_entry - get the last element from a list
 * @ptr:    the list head to take the element from.
 * @type:    the type of the struct this is embedded in.
 * @member:    the name of the list_head within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_last_entry(ptr, type, member) \
    list_entry((ptr)->prev, type, member)

/**
 * list_first_entry_or_null - get the first element from a list
 * @ptr:    the list head to take the element from.
 * @type:    the type of the struct this is embedded in.
 * @member:    the name of the list_head within the struct.
 *
 * Note that if the list is empty, it returns NULL.
 */
#define list_first_entry_or_null(ptr, type, member) ({ \
    struct list_head *head__ = (ptr); \
    struct list_head *pos__ = READ_ONCE(head__->next); \
    pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
})

/**
 * list_next_entry - get the next element in list
 * @pos:    the type * to cursor
 * @member:    the name of the list_head within the struct.
 */
#define list_next_entry(pos, member) \
    list_entry((pos)->member.next, typeof(*(pos)), member)

/**
 * list_prev_entry - get the prev element in list
 * @pos:    the type * to cursor
 * @member:    the name of the list_head within the struct.
 */
#define list_prev_entry(pos, member) \
    list_entry((pos)->member.prev, typeof(*(pos)), member)

/**
 * list_for_each    -    iterate over a list
 * @pos:    the &struct list_head to use as a loop cursor.
 * @head:    the head for your list.
 */
#define list_for_each(pos, head) \
    for (pos = (head)->next; pos != (head); pos = pos->next)

/**
 * list_for_each_prev    -    iterate over a list backwards
 * @pos:    the &struct list_head to use as a loop cursor.
 * @head:    the head for your list.
 */
#define list_for_each_prev(pos, head) \
    for (pos = (head)->prev; pos != (head); pos = pos->prev)

/**
 * list_for_each_safe - iterate over a list safe against removal of list entry
 * @pos:    the &struct list_head to use as a loop cursor.
 * @n:        another &struct list_head to use as temporary storage
 * @head:    the head for your list.
 */
#define list_for_each_safe(pos, n, head) \
    for (pos = (head)->next, n = pos->next; pos != (head); \
        pos = n, n = pos->next)

/**
 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 * @pos:    the &struct list_head to use as a loop cursor.
 * @n:        another &struct list_head to use as temporary storage
 * @head:    the head for your list.
 */
#define list_for_each_prev_safe(pos, n, head) \
    for (pos = (head)->prev, n = pos->prev; \
         pos != (head); \
         pos = n, n = pos->prev)

/**
 * list_for_each_entry    -    iterate over list of given type
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_head within the struct.
 */
#define list_for_each_entry(pos, head, member)                \
    for (pos = list_first_entry(head, typeof(*pos), member);    \
         &pos->member != (head);                    \
         pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_reverse - iterate backwards over list of given type.
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_head within the struct.
 */
#define list_for_each_entry_reverse(pos, head, member)            \
    for (pos = list_last_entry(head, typeof(*pos), member);        \
         &pos->member != (head);                     \
         pos = list_prev_entry(pos, member))

/**
 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
 * @pos:    the type * to use as a start point
 * @head:    the head of the list
 * @member:    the name of the list_head within the struct.
 *
 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
 */
#define list_prepare_entry(pos, head, member) \
    ((pos) ? : list_entry(head, typeof(*pos), member))

/**
 * list_for_each_entry_continue - continue iteration over list of given type
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_head within the struct.
 *
 * Continue to iterate over list of given type, continuing after
 * the current position.
 */
#define list_for_each_entry_continue(pos, head, member)         \
    for (pos = list_next_entry(pos, member);            \
         &pos->member != (head);                    \
         pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_head within the struct.
 *
 * Start to iterate over list of given type backwards, continuing after
 * the current position.
 */
#define list_for_each_entry_continue_reverse(pos, head, member)        \
    for (pos = list_prev_entry(pos, member);            \
         &pos->member != (head);                    \
         pos = list_prev_entry(pos, member))

/**
 * list_for_each_entry_from - iterate over list of given type from the current point
 * @pos:    the type * to use as a loop cursor.
 * @head:    the head for your list.
 * @member:    the name of the list_head within the struct.
 *
 * Iterate over list of given type, continuing from current position.
 */
#define list_for_each_entry_from(pos, head, member)             \
    for (; &pos->member != (head);                    \
         pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @pos:    the type * to use as a loop cursor.
 * @n:        another type * to use as temporary storage
 * @head:    the head for your list.
 * @member:    the name of the list_head within the struct.
 */
#define list_for_each_entry_safe(pos, n, head, member)            \
    for (pos = list_first_entry(head, typeof(*pos), member),    \
        n = list_next_entry(pos, member);            \
         &pos->member != (head);                     \
         pos = n, n = list_next_entry(n, member))

/**
 * list_for_each_entry_safe_continue - continue list iteration safe against removal
 * @pos:    the type * to use as a loop cursor.
 * @n:        another type * to use as temporary storage
 * @head:    the head for your list.
 * @member:    the name of the list_head within the struct.
 *
 * Iterate over list of given type, continuing after current point,
 * safe against removal of list entry.
 */
#define list_for_each_entry_safe_continue(pos, n, head, member)         \
    for (pos = list_next_entry(pos, member),                 \
        n = list_next_entry(pos, member);                \
         &pos->member != (head);                        \
         pos = n, n = list_next_entry(n, member))

/**
 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
 * @pos:    the type * to use as a loop cursor.
 * @n:        another type * to use as temporary storage
 * @head:    the head for your list.
 * @member:    the name of the list_head within the struct.
 *
 * Iterate over list of given type from current point, safe against
 * removal of list entry.
 */
#define list_for_each_entry_safe_from(pos, n, head, member)             \
    for (n = list_next_entry(pos, member);                    \
         &pos->member != (head);                        \
         pos = n, n = list_next_entry(n, member))

/**
 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
 * @pos:    the type * to use as a loop cursor.
 * @n:        another type * to use as temporary storage
 * @head:    the head for your list.
 * @member:    the name of the list_head within the struct.
 *
 * Iterate backwards over list of given type, safe against removal
 * of list entry.
 */
#define list_for_each_entry_safe_reverse(pos, n, head, member)        \
    for (pos = list_last_entry(head, typeof(*pos), member),        \
        n = list_prev_entry(pos, member);            \
         &pos->member != (head);                     \
         pos = n, n = list_prev_entry(n, member))

/**
 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
 * @pos:    the loop cursor used in the list_for_each_entry_safe loop
 * @n:        temporary storage used in list_for_each_entry_safe
 * @member:    the name of the list_head within the struct.
 *
 * list_safe_reset_next is not safe to use in general if the list may be
 * modified concurrently (eg. the lock is dropped in the loop body). An
 * exception to this is if the cursor element (pos) is pinned in the list,
 * and list_safe_reset_next is called after re-taking the lock and before
 * completing the current iteration of the loop body.
 */
#define list_safe_reset_next(pos, n, member)                \
    n = list_next_entry(pos, member)

    
#endif

 

 

2,测试代码

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#if 1  

typedef struct USER_DATA
{  
    int key;  
    int param;  

    struct list_head list;
}USER_DATA_ST;  

//LIST_HEAD(my_list);

struct list_head my_list;

#define ARRAY_SIZE 32

int main()  
{  
    int i;  
    struct list_head *tmp;
    struct list_head *tmp2;
    struct USER_DATA *pstListNode = NULL;
  
    printf("\r\n init  : ");  
    INIT_LIST_HEAD(&my_list);
    srand(time(NULL));    
    for(i = 0; i < ARRAY_SIZE; i++) {  
        pstListNode = malloc(sizeof(USER_DATA_ST));
        if (NULL == pstListNode) return 0;

        pstListNode->key = i;
        pstListNode->param = rand()%ARRAY_SIZE;  
        list_add_tail(&pstListNode->list, &my_list);
    }  
    
    printf("\r\n walk: ");  
    list_for_each(tmp, &my_list)
    {
        pstListNode = list_entry(tmp, struct USER_DATA, list);
        printf("[%d]=%d ", pstListNode->key, pstListNode->param);
    }

    printf("\r\n delete: ");  
    list_for_each_safe(tmp, tmp2, &my_list)
    {
        pstListNode = list_entry(tmp, struct USER_DATA, list);
        if (pstListNode->param % 3 == 0) {
            printf("[%d]=%d ", pstListNode->key, pstListNode->param);
            list_del_init(&pstListNode->list);
            free(pstListNode);
        }
    }

    printf("\r\n walk: ");  
    list_for_each(tmp, &my_list)
    {
        pstListNode = list_entry(tmp, struct USER_DATA, list);
        printf("[%d]%d ", pstListNode->key, pstListNode->param);
    }

    printf("\r\n destroy: ");  
    list_for_each_safe(tmp, tmp2, &my_list)
    {
        pstListNode = list_entry(tmp, struct USER_DATA, list);
        list_del_init(&pstListNode->list);
        free(pstListNode);
    }
      
    return 0;  
} 


#endif

 

目录
相关文章
|
Unix Linux 程序员
Linux必知词汇:GNU通用公共许可证 GPL(GNU General Public License)
Linux必知词汇:GNU通用公共许可证 GPL(GNU General Public License)
2181 0
|
2月前
|
存储 缓存 监控
Linux 系统 内存通用指标以及查询方式
Linux 系统 内存通用指标以及查询方式
21 0
|
11月前
|
Linux 网络安全
【Linux通用】Centos系列跳过首次登陆新建用户
【Linux通用】Centos系列跳过首次登陆新建用户
1436 0
|
安全 Ubuntu Linux
新一代通用的Linux软件包管理工具
  1. 前言   snap和flatpak都是新一代跨Linux发行版的软件包管理技术,这两种下一代打包方法在本质上拥有相同的目标和特点:即不依赖于第三方系统功能库的独立包装。上一篇我们简单介绍了flatpak的原理,今天我们接着简要介绍snap的安全机制。   2. 简介   snap是Canoncial公司提出的新一代linux包管理工具,致力于将所有linux发行版上的包格式统一,做到“一次打包,到处使用”。目前snap已经可以在包括Ubuntu、Fedora、Mint等多个Linux发行版上使用。首先我们来了解下snap相关的各种名词:
504 0
|
Java Linux Shell
Linux下启动java程序的通用脚本
Linux下启动java程序的通用脚本
343 0
|
druid 关系型数据库 MySQL
三、Linux(CentOS7)通用预编译包方式安装MySQL数据库
MySQL通用编译包是已经编译好的只要解压后配置一下就可以使用了,不用安装,非常省心省力,下面是具体操作步骤: 1、增加用户名和用户组 : #groupadd mysql #useradd -r -g mysql mysql ---新建msyql 用户禁止登录shell
253 0
|
NoSQL Java Linux
把redis源码的linux网络库提取出来,自己封装成通用库使用(2)(★firecat推荐★)
把redis源码的linux网络库提取出来,自己封装成通用库使用(★firecat推荐★)
133 0
|
NoSQL 网络协议 Linux
把redis源码的linux网络库提取出来,自己封装成通用库使用(1)(★firecat推荐★)
把redis源码的linux网络库提取出来,自己封装成通用库使用(★firecat推荐★)
144 0
|
Unix Linux
Linux必知词汇:GNU宽通用公共许可证 LGPL(GNU Lesser General Public License)
Linux必知词汇:GNU宽通用公共许可证 LGPL(GNU Lesser General Public License)
1509 0