python实现地理位置类数据爬取与geohash应用初探

简介: 最近想做一个简单的地理位置分析,比如获取一些城市公交站点对应的geohash,geohash其实是将平时常见的经纬度进行了降维,这样可以进行类似附近的餐馆等内容的分析。1.

最近想做一个简单的地理位置分析,比如获取一些城市公交站点对应的geohash,geohash其实是将平时常见的经纬度进行了降维,这样可以进行类似附近的餐馆等内容的分析。


1. 正逆地理编码

http://lbsyun.baidu.com/index.php?title=webapi/guide/webservice-geocoding

正/逆地理编码服务(又名Geocoding API)是一类Web API接口服务;
正向地理编码服务提供将结构化地址数据(如:北京市海淀区上地十街十号)转换为对应坐标点(经纬度)功能;
逆向地理编码服务提供将坐标点(经纬度)转换为对应位置信息(如所在行政区划,周边地标点分布)功能。

1.1 百度地图api正逆地理编码存在偏差

百度地图坐标拾取
http://api.map.baidu.com/lbsapi/getpoint/index.html

这里写图片描述

这里写图片描述

可以直接使用的百度url:后面直接跟地址就好如上图(key不知道是谁的),可以发现百度的搜索分词权重直接把雍和宫地铁站定位到了雍和宫

http://api.map.baidu.com/geocoder?key=f247cdb592eb43ebac6ccd27f796e2d2&output=json&address=

url new key:
http://api.map.baidu.com/geocoder?key=xpKTc80ZnEGiy1elZCMtEepEYKj5tqQr&output=json&address=

http://api.map.baidu.com/geocoder/v2/?address=&output=json&ak=xpKTc80ZnEGiy1elZCMtEepEYKj5tqQr

1.2 高德地图接口

高德地图坐标拾取
http://lbs.amap.com/console/show/picker

发送一个request请求,带上地理位置和api key 即可返回一个包含了经纬度str。
地理编码接口:

# -*- coding: utf-8 -*-
import requests
def geocode_change_key(address,key):
    parameters = {'address': address, 'key': key}
    base = 'http://restapi.amap.com/v3/geocode/geo'
    response = requests.get(base, parameters)
    answer = response.json()
    return str(answer['geocodes'][0]['location']).split(',')

2. 坐标系

谷歌地图采用的是WGS84地理坐标系(中国范围除外)
谷歌中国地图、搜搜中国地图、高德地图采用的是GCJ02地理坐标系
百度采用的是BD09坐标系。
而设备一般包含GPS芯片或者北斗芯片获取的经纬度为WGS84地理坐标系。

所以我们要根据得到的经纬度的坐标类型和地图厂商类型在地图上标点,否则会出现获取的位置误差。为什么不统一用WGS84地理坐标系这就是国家地理测绘总局对于出版地图的要求,出版地图必须符合GCJ02坐标系标准,也就是国家规定不能直接使用WGS84地理坐标系

百度坐标系说明书:http://lbsyun.baidu.com/index.php?title=coordinate

2.1 我们常说的坐标系

  • WGS84:为一种大地坐标系,也是目前广泛使用的GPS全球卫星定位系统使用的坐标系。

  • GCJ02:又称火星坐标系,是由中国国家测绘局制定的地理坐标系统,是由WGS84加密后得到的坐标系。

  • BD09:为百度坐标系,在GCJ02坐标系基础上再次加密。其中bd09ll表示百度经纬度坐标,bd09mc表示百度墨卡托米制坐标。

2.2 坐标转码关键代码

# -*- coding: utf-8 -*-
import json
import urllib
import math

x_pi = 3.14159265358979324 * 3000.0 / 180.0
pi = 3.1415926535897932384626  # π
a = 6378245.0  # 长半轴
ee = 0.00669342162296594323  # 扁率



def gcj02_to_bd09(lng, lat):
    """
    火星坐标系(GCJ-02)转百度坐标系(BD-09)
    谷歌、高德——>百度
    :param lng:火星坐标经度
    :param lat:火星坐标纬度
    :return:
    """
    z = math.sqrt(lng * lng + lat * lat) + 0.00002 * math.sin(lat * x_pi)
    theta = math.atan2(lat, lng) + 0.000003 * math.cos(lng * x_pi)
    bd_lng = z * math.cos(theta) + 0.0065
    bd_lat = z * math.sin(theta) + 0.006
    return [bd_lng, bd_lat]


def bd09_to_gcj02(bd_lon, bd_lat):
    """
    百度坐标系(BD-09)转火星坐标系(GCJ-02)
    百度——>谷歌、高德
    :param bd_lat:百度坐标纬度
    :param bd_lon:百度坐标经度
    :return:转换后的坐标列表形式
    """
    x = bd_lon - 0.0065
    y = bd_lat - 0.006
    z = math.sqrt(x * x + y * y) - 0.00002 * math.sin(y * x_pi)
    theta = math.atan2(y, x) - 0.000003 * math.cos(x * x_pi)
    gg_lng = z * math.cos(theta)
    gg_lat = z * math.sin(theta)
    return [gg_lng, gg_lat]


def wgs84_to_gcj02(lng, lat):
    """
    WGS84转GCJ02(火星坐标系)
    :param lng:WGS84坐标系的经度
    :param lat:WGS84坐标系的纬度
    :return:
    """
    if out_of_china(lng, lat):  # 判断是否在国内
        return lng, lat
    dlat = _transformlat(lng - 105.0, lat - 35.0)
    dlng = _transformlng(lng - 105.0, lat - 35.0)
    radlat = lat / 180.0 * pi
    magic = math.sin(radlat)
    magic = 1 - ee * magic * magic
    sqrtmagic = math.sqrt(magic)
    dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrtmagic) * pi)
    dlng = (dlng * 180.0) / (a / sqrtmagic * math.cos(radlat) * pi)
    mglat = lat + dlat
    mglng = lng + dlng
    return [mglng, mglat]


def gcj02_to_wgs84(lng, lat):
    """
    GCJ02(火星坐标系)转GPS84
    :param lng:火星坐标系的经度
    :param lat:火星坐标系纬度
    :return:
    """
    if out_of_china(lng, lat):
        return lng, lat
    dlat = _transformlat(lng - 105.0, lat - 35.0)
    dlng = _transformlng(lng - 105.0, lat - 35.0)
    radlat = lat / 180.0 * pi
    magic = math.sin(radlat)
    magic = 1 - ee * magic * magic
    sqrtmagic = math.sqrt(magic)
    dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrtmagic) * pi)
    dlng = (dlng * 180.0) / (a / sqrtmagic * math.cos(radlat) * pi)
    mglat = lat + dlat
    mglng = lng + dlng
    return [lng * 2 - mglng, lat * 2 - mglat]


def bd09_to_wgs84(bd_lon, bd_lat):
    lon, lat = bd09_to_gcj02(bd_lon, bd_lat)
    return gcj02_to_wgs84(lon, lat)


def wgs84_to_bd09(lon, lat):
    lon, lat = wgs84_to_gcj02(lon, lat)
    return gcj02_to_bd09(lon, lat)


def _transformlat(lng, lat):
    ret = -100.0 + 2.0 * lng + 3.0 * lat + 0.2 * lat * lat + \
          0.1 * lng * lat + 0.2 * math.sqrt(math.fabs(lng))
    ret += (20.0 * math.sin(6.0 * lng * pi) + 20.0 *
            math.sin(2.0 * lng * pi)) * 2.0 / 3.0
    ret += (20.0 * math.sin(lat * pi) + 40.0 *
            math.sin(lat / 3.0 * pi)) * 2.0 / 3.0
    ret += (160.0 * math.sin(lat / 12.0 * pi) + 320 *
            math.sin(lat * pi / 30.0)) * 2.0 / 3.0
    return ret


def _transformlng(lng, lat):
    ret = 300.0 + lng + 2.0 * lat + 0.1 * lng * lng + \
          0.1 * lng * lat + 0.1 * math.sqrt(math.fabs(lng))
    ret += (20.0 * math.sin(6.0 * lng * pi) + 20.0 *
            math.sin(2.0 * lng * pi)) * 2.0 / 3.0
    ret += (20.0 * math.sin(lng * pi) + 40.0 *
            math.sin(lng / 3.0 * pi)) * 2.0 / 3.0
    ret += (150.0 * math.sin(lng / 12.0 * pi) + 300.0 *
            math.sin(lng / 30.0 * pi)) * 2.0 / 3.0
    return ret


def out_of_china(lng, lat):
    """
    判断是否在国内,不在国内不做偏移
    :param lng:
    :param lat:
    :return:
    """
    return not (lng > 73.66 and lng < 135.05 and lat > 3.86 and lat < 53.55)


if __name__ == '__main__':

    lng = 
    lat = 
    # result1 = gcj02_to_bd09(lng, lat)
    # result2 = bd09_to_gcj02(lng, lat)
    # result3 = wgs84_to_gcj02(lng, lat)
    result4 = gcj02_to_wgs84(lng, lat)
    #result5 = bd09_to_wgs84(lng, lat)
    #result6 = wgs84_to_bd09(lng, lat)

    print (result4)


3. geohash

https://www.cnblogs.com/LBSer/p/3310455.html

当geohash base32编码长度为8时,精度在19米左右,而当编码长度为9时,精度在2米左右,所以一般来说用八位就够用。

这里写图片描述
这里写图片描述
python3如何使用geohash呢,网上说使用pip install geohash后import geohash 会报错,当然同样的作者提供了geohash包的fix版geohash2,所以安装时候应该是:(改源码的方式有点太高大上,不太安全?)

pip install geohash2

我很纳闷的是python中能够生成geohash 的包实在是太多了:

这里写图片描述

这里写图片描述
这里写图片描述

3.1 获取包围盒

可以看到7位geohash编码带上一个包围盒,相对于6位geohash编码准确许多

这里写图片描述
这里写图片描述

简单写了一个类,使用geohash2(作者居然没有提供),我只好复制了mzgeohash的部分代码
https://gitee.com/wangyaning/python/tree/master/geohash
可以直接这么用:

if __name__=='__main__':
    myTestGeohash = MyGeohash()
    #wx4g340
    print(myTestGeohash.getneighbors('wx4g340'))
输出如下:    
{'ne': 'wx4g343', 'n': 'wx4g342', 'w': 'wx4g2fp', 'c': 'wx4g340', 'sw': 'wx4g2cz', 'se': 'wx4g31c', 'nw': 'wx4g2fr', 'e': 'wx4g341', 's': 'wx4g31b'}

测试geohash查询接口

https://cevin.net/geohash/

这里写图片描述


结构化数据的处理

爬好数据的后处理,入库

新学了sqlldr命令,挺快,连python代码都不用写了

sqlldr userid='username/password@serverip/instance' control=./xxx.ctl errors=99999999 rows=20000 direct=true
data=xxxxxxx.txt

xxx.ctl文件如下


LOAD DATA
CHARACTERSET 'UTF8'
INFILE *
APPEND INTO TABLE TABLENAME
FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '"&*!'
trailing nullcols
(
linename ,
xxxxxx,
xxxxxx
)

部分参考文献

简单的城市名转换成经纬度:
https://www.cnblogs.com/zle1992/p/7209932.html

批量获取经纬度:
https://www.cnblogs.com/reboot777/p/7124010.html
用Python计算北京地铁的两站间最短换乘路线:
http://blog.csdn.net/myjiayan/article/details/45954679

使用爬虫获取获取所有的 站点名
http://blog.csdn.net/wenwu_both/article/details/70168760

高德地图地理编码服务

http://blog.csdn.net/u013250416/article/details/71178156

https://www.cnblogs.com/xautxuqiang/p/6241561.html

相关文章
|
1月前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
890 1
|
1月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
300 0
|
30天前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
1月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
2月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
174 0
|
2月前
|
数据采集 关系型数据库 MySQL
python爬取数据存入数据库
Python爬虫结合Scrapy与SQLAlchemy,实现高效数据采集并存入MySQL/PostgreSQL/SQLite。通过ORM映射、连接池优化与批量提交,支持百万级数据高速写入,具备良好的可扩展性与稳定性。
|
2月前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
2月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
2月前
|
机器学习/深度学习 算法 安全
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
164 6
|
2月前
|
缓存 供应链 芯片
电子元件类商品 item_get - 商品详情接口深度分析及 Python 实现
电子元件商品接口需精准返回型号参数、规格属性、认证及库存等专业数据,支持供应链管理与采购决策。本文详解其接口特性、数据结构与Python实现方案。

推荐镜像

更多