python实现地理位置类数据爬取与geohash应用初探

简介: 最近想做一个简单的地理位置分析,比如获取一些城市公交站点对应的geohash,geohash其实是将平时常见的经纬度进行了降维,这样可以进行类似附近的餐馆等内容的分析。1.

最近想做一个简单的地理位置分析,比如获取一些城市公交站点对应的geohash,geohash其实是将平时常见的经纬度进行了降维,这样可以进行类似附近的餐馆等内容的分析。


1. 正逆地理编码

http://lbsyun.baidu.com/index.php?title=webapi/guide/webservice-geocoding

正/逆地理编码服务(又名Geocoding API)是一类Web API接口服务;
正向地理编码服务提供将结构化地址数据(如:北京市海淀区上地十街十号)转换为对应坐标点(经纬度)功能;
逆向地理编码服务提供将坐标点(经纬度)转换为对应位置信息(如所在行政区划,周边地标点分布)功能。

1.1 百度地图api正逆地理编码存在偏差

百度地图坐标拾取
http://api.map.baidu.com/lbsapi/getpoint/index.html

这里写图片描述

这里写图片描述

可以直接使用的百度url:后面直接跟地址就好如上图(key不知道是谁的),可以发现百度的搜索分词权重直接把雍和宫地铁站定位到了雍和宫

http://api.map.baidu.com/geocoder?key=f247cdb592eb43ebac6ccd27f796e2d2&output=json&address=

url new key:
http://api.map.baidu.com/geocoder?key=xpKTc80ZnEGiy1elZCMtEepEYKj5tqQr&output=json&address=

http://api.map.baidu.com/geocoder/v2/?address=&output=json&ak=xpKTc80ZnEGiy1elZCMtEepEYKj5tqQr

1.2 高德地图接口

高德地图坐标拾取
http://lbs.amap.com/console/show/picker

发送一个request请求,带上地理位置和api key 即可返回一个包含了经纬度str。
地理编码接口:

# -*- coding: utf-8 -*-
import requests
def geocode_change_key(address,key):
    parameters = {'address': address, 'key': key}
    base = 'http://restapi.amap.com/v3/geocode/geo'
    response = requests.get(base, parameters)
    answer = response.json()
    return str(answer['geocodes'][0]['location']).split(',')

2. 坐标系

谷歌地图采用的是WGS84地理坐标系(中国范围除外)
谷歌中国地图、搜搜中国地图、高德地图采用的是GCJ02地理坐标系
百度采用的是BD09坐标系。
而设备一般包含GPS芯片或者北斗芯片获取的经纬度为WGS84地理坐标系。

所以我们要根据得到的经纬度的坐标类型和地图厂商类型在地图上标点,否则会出现获取的位置误差。为什么不统一用WGS84地理坐标系这就是国家地理测绘总局对于出版地图的要求,出版地图必须符合GCJ02坐标系标准,也就是国家规定不能直接使用WGS84地理坐标系

百度坐标系说明书:http://lbsyun.baidu.com/index.php?title=coordinate

2.1 我们常说的坐标系

  • WGS84:为一种大地坐标系,也是目前广泛使用的GPS全球卫星定位系统使用的坐标系。

  • GCJ02:又称火星坐标系,是由中国国家测绘局制定的地理坐标系统,是由WGS84加密后得到的坐标系。

  • BD09:为百度坐标系,在GCJ02坐标系基础上再次加密。其中bd09ll表示百度经纬度坐标,bd09mc表示百度墨卡托米制坐标。

2.2 坐标转码关键代码

# -*- coding: utf-8 -*-
import json
import urllib
import math

x_pi = 3.14159265358979324 * 3000.0 / 180.0
pi = 3.1415926535897932384626  # π
a = 6378245.0  # 长半轴
ee = 0.00669342162296594323  # 扁率



def gcj02_to_bd09(lng, lat):
    """
    火星坐标系(GCJ-02)转百度坐标系(BD-09)
    谷歌、高德——>百度
    :param lng:火星坐标经度
    :param lat:火星坐标纬度
    :return:
    """
    z = math.sqrt(lng * lng + lat * lat) + 0.00002 * math.sin(lat * x_pi)
    theta = math.atan2(lat, lng) + 0.000003 * math.cos(lng * x_pi)
    bd_lng = z * math.cos(theta) + 0.0065
    bd_lat = z * math.sin(theta) + 0.006
    return [bd_lng, bd_lat]


def bd09_to_gcj02(bd_lon, bd_lat):
    """
    百度坐标系(BD-09)转火星坐标系(GCJ-02)
    百度——>谷歌、高德
    :param bd_lat:百度坐标纬度
    :param bd_lon:百度坐标经度
    :return:转换后的坐标列表形式
    """
    x = bd_lon - 0.0065
    y = bd_lat - 0.006
    z = math.sqrt(x * x + y * y) - 0.00002 * math.sin(y * x_pi)
    theta = math.atan2(y, x) - 0.000003 * math.cos(x * x_pi)
    gg_lng = z * math.cos(theta)
    gg_lat = z * math.sin(theta)
    return [gg_lng, gg_lat]


def wgs84_to_gcj02(lng, lat):
    """
    WGS84转GCJ02(火星坐标系)
    :param lng:WGS84坐标系的经度
    :param lat:WGS84坐标系的纬度
    :return:
    """
    if out_of_china(lng, lat):  # 判断是否在国内
        return lng, lat
    dlat = _transformlat(lng - 105.0, lat - 35.0)
    dlng = _transformlng(lng - 105.0, lat - 35.0)
    radlat = lat / 180.0 * pi
    magic = math.sin(radlat)
    magic = 1 - ee * magic * magic
    sqrtmagic = math.sqrt(magic)
    dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrtmagic) * pi)
    dlng = (dlng * 180.0) / (a / sqrtmagic * math.cos(radlat) * pi)
    mglat = lat + dlat
    mglng = lng + dlng
    return [mglng, mglat]


def gcj02_to_wgs84(lng, lat):
    """
    GCJ02(火星坐标系)转GPS84
    :param lng:火星坐标系的经度
    :param lat:火星坐标系纬度
    :return:
    """
    if out_of_china(lng, lat):
        return lng, lat
    dlat = _transformlat(lng - 105.0, lat - 35.0)
    dlng = _transformlng(lng - 105.0, lat - 35.0)
    radlat = lat / 180.0 * pi
    magic = math.sin(radlat)
    magic = 1 - ee * magic * magic
    sqrtmagic = math.sqrt(magic)
    dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrtmagic) * pi)
    dlng = (dlng * 180.0) / (a / sqrtmagic * math.cos(radlat) * pi)
    mglat = lat + dlat
    mglng = lng + dlng
    return [lng * 2 - mglng, lat * 2 - mglat]


def bd09_to_wgs84(bd_lon, bd_lat):
    lon, lat = bd09_to_gcj02(bd_lon, bd_lat)
    return gcj02_to_wgs84(lon, lat)


def wgs84_to_bd09(lon, lat):
    lon, lat = wgs84_to_gcj02(lon, lat)
    return gcj02_to_bd09(lon, lat)


def _transformlat(lng, lat):
    ret = -100.0 + 2.0 * lng + 3.0 * lat + 0.2 * lat * lat + \
          0.1 * lng * lat + 0.2 * math.sqrt(math.fabs(lng))
    ret += (20.0 * math.sin(6.0 * lng * pi) + 20.0 *
            math.sin(2.0 * lng * pi)) * 2.0 / 3.0
    ret += (20.0 * math.sin(lat * pi) + 40.0 *
            math.sin(lat / 3.0 * pi)) * 2.0 / 3.0
    ret += (160.0 * math.sin(lat / 12.0 * pi) + 320 *
            math.sin(lat * pi / 30.0)) * 2.0 / 3.0
    return ret


def _transformlng(lng, lat):
    ret = 300.0 + lng + 2.0 * lat + 0.1 * lng * lng + \
          0.1 * lng * lat + 0.1 * math.sqrt(math.fabs(lng))
    ret += (20.0 * math.sin(6.0 * lng * pi) + 20.0 *
            math.sin(2.0 * lng * pi)) * 2.0 / 3.0
    ret += (20.0 * math.sin(lng * pi) + 40.0 *
            math.sin(lng / 3.0 * pi)) * 2.0 / 3.0
    ret += (150.0 * math.sin(lng / 12.0 * pi) + 300.0 *
            math.sin(lng / 30.0 * pi)) * 2.0 / 3.0
    return ret


def out_of_china(lng, lat):
    """
    判断是否在国内,不在国内不做偏移
    :param lng:
    :param lat:
    :return:
    """
    return not (lng > 73.66 and lng < 135.05 and lat > 3.86 and lat < 53.55)


if __name__ == '__main__':

    lng = 
    lat = 
    # result1 = gcj02_to_bd09(lng, lat)
    # result2 = bd09_to_gcj02(lng, lat)
    # result3 = wgs84_to_gcj02(lng, lat)
    result4 = gcj02_to_wgs84(lng, lat)
    #result5 = bd09_to_wgs84(lng, lat)
    #result6 = wgs84_to_bd09(lng, lat)

    print (result4)


3. geohash

https://www.cnblogs.com/LBSer/p/3310455.html

当geohash base32编码长度为8时,精度在19米左右,而当编码长度为9时,精度在2米左右,所以一般来说用八位就够用。

这里写图片描述
这里写图片描述
python3如何使用geohash呢,网上说使用pip install geohash后import geohash 会报错,当然同样的作者提供了geohash包的fix版geohash2,所以安装时候应该是:(改源码的方式有点太高大上,不太安全?)

pip install geohash2

我很纳闷的是python中能够生成geohash 的包实在是太多了:

这里写图片描述

这里写图片描述
这里写图片描述

3.1 获取包围盒

可以看到7位geohash编码带上一个包围盒,相对于6位geohash编码准确许多

这里写图片描述
这里写图片描述

简单写了一个类,使用geohash2(作者居然没有提供),我只好复制了mzgeohash的部分代码
https://gitee.com/wangyaning/python/tree/master/geohash
可以直接这么用:

if __name__=='__main__':
    myTestGeohash = MyGeohash()
    #wx4g340
    print(myTestGeohash.getneighbors('wx4g340'))
输出如下:    
{'ne': 'wx4g343', 'n': 'wx4g342', 'w': 'wx4g2fp', 'c': 'wx4g340', 'sw': 'wx4g2cz', 'se': 'wx4g31c', 'nw': 'wx4g2fr', 'e': 'wx4g341', 's': 'wx4g31b'}

测试geohash查询接口

https://cevin.net/geohash/

这里写图片描述


结构化数据的处理

爬好数据的后处理,入库

新学了sqlldr命令,挺快,连python代码都不用写了

sqlldr userid='username/password@serverip/instance' control=./xxx.ctl errors=99999999 rows=20000 direct=true
data=xxxxxxx.txt

xxx.ctl文件如下


LOAD DATA
CHARACTERSET 'UTF8'
INFILE *
APPEND INTO TABLE TABLENAME
FIELDS TERMINATED BY ','
OPTIONALLY ENCLOSED BY '"&*!'
trailing nullcols
(
linename ,
xxxxxx,
xxxxxx
)

部分参考文献

简单的城市名转换成经纬度:
https://www.cnblogs.com/zle1992/p/7209932.html

批量获取经纬度:
https://www.cnblogs.com/reboot777/p/7124010.html
用Python计算北京地铁的两站间最短换乘路线:
http://blog.csdn.net/myjiayan/article/details/45954679

使用爬虫获取获取所有的 站点名
http://blog.csdn.net/wenwu_both/article/details/70168760

高德地图地理编码服务

http://blog.csdn.net/u013250416/article/details/71178156

https://www.cnblogs.com/xautxuqiang/p/6241561.html

相关文章
|
11天前
|
数据库 Python
Python 应用
Python 应用。
32 4
|
19天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
60 6
|
20天前
|
数据采集 数据安全/隐私保护 开发者
非阻塞 I/O:异步编程提升 Python 应用速度
非阻塞 I/O:异步编程提升 Python 应用速度
|
10天前
|
机器学习/深度学习 数据采集 数据可视化
Python在数据科学中的应用:从入门到实践
本文旨在为读者提供一个Python在数据科学领域应用的全面概览。我们将从Python的基础语法开始,逐步深入到数据处理、分析和可视化的高级技术。文章不仅涵盖了Python中常用的数据科学库,如NumPy、Pandas和Matplotlib,还探讨了机器学习库Scikit-learn的使用。通过实际案例分析,本文将展示如何利用Python进行数据清洗、特征工程、模型训练和结果评估。此外,我们还将探讨Python在大数据处理中的应用,以及如何通过集成学习和深度学习技术来提升数据分析的准确性和效率。
|
12天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
32 1
|
13天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
23 1
|
14天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
15天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
20天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
46 4
|
13天前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
23 0
下一篇
无影云桌面