Linux IPC实践(12) --System V信号量(2)

简介: 实践1:信号量实现进程互斥父子进程执行流程如下:父进程子进程PPO(print)X(print)sleepsleepO(print)X(print)...

实践1:信号量实现进程互斥

父子进程执行流程如下:

父进程

子进程

P

P

O(print)

X(print)

sleep

sleep

O(print)

X(print)

V

V

sleep

sleep

从图中可以看出, O或X总是成对出现的, 要么两个O, 要么两个X;

/**P,V原语实现父子进程互斥使用终端**/
// 程序代码
int main(int argc,char *argv[])
{
    int semid = sem_create(IPC_PRIVATE);
    sem_setval(semid, 1);
    int count = 10;

    pid_t pid = fork();
    if (pid == -1)
        err_exit("fork error");
    else if (pid > 0)   //子进程
    {
        srand(getpid());
        while (count --)
        {
            sem_P(semid);
            //临界区开始
            cout << 'X';
            fflush(stdout); //一定要加上ffflush, 因为中断是行缓冲的
            sleep(rand()%3);
            cout << 'X';
            fflush(stdout);
            //临界区结束
            sem_V(semid);
            sleep(rand()%3);
        }
    }
    else                //父进程
    {
        srand(getpid());
        while (count --)
        {
            sem_P(semid);
            //临界区开始
            cout << 'O';
            fflush(stdout);
            sleep(rand()%3);
            cout << 'O';
            fflush(stdout);
            //临界区结束
            sem_V(semid);
            sleep(rand()%3);
        }
        wait(NULL);
        sem_delete(semid);
    }

    return 0;
}

实践2: 信号量集解决哲学家进餐问题

   假设有五位哲学家围坐在一张圆形餐桌旁,做以下两件事情之一:吃饭,或者思考。吃东西的时候,他们就停止思考,思考的时候也停止吃东西。每两个哲学家之间有一只餐叉。因为用一只餐叉很难吃饭,所以假设哲学家必须用两只餐叉吃东西, 而且他们只能使用自己左右手边的那两只餐叉。

/** 
解决的方法采用的是: 只有左右两个刀叉都能够使用时,才拿起两个刀叉
实现了有死锁和无死锁的两种形式的wait_2fork(见下)
**/

int semid;
//没有死锁的wait
void wait_2fork(unsigned short no)
{
    unsigned short left = no;
    unsigned short right = (no+1)%5;
    struct sembuf sops[2] = {{left, -1, 0}, {right, -1, 0}};
    //同时获取左右两把刀叉
    if (semop(semid, sops, 2) == -1)
        err_exit("wait_2fork error");
}
/*
//有死锁的wait
void wait_2fork(unsigned short no)
{
    unsigned short left = no;
    unsigned short right = (no+1)%5;
    struct sembuf sops = {left, -1, 0};
    //获取左边的刀叉
    if (semop(semid, &sops, 1) == -1)
        err_exit("wait_2fork error");
    sleep(4);   //沉睡几秒, 加速死锁的产生
    sops.sem_num = right;
    //获取右边的刀叉
    if (semop(semid, &sops, 1) == -1)
        err_exit("wait_2fork error");
}
*/
//释放两把刀叉
void signal_2fork(unsigned short no)
{
    unsigned short left = no;
    unsigned short right = (no+1)%5;
    struct sembuf sops[2] = {{left, 1, 0}, {right, 1, 0}};
    if (semop(semid, sops, 2) == -1)
        err_exit("signal_2fork error");
}
//哲学家
void philosopher(unsigned short no)
{
    srand(time(NULL));
    while (true)
    {
        cout << no << " is thinking" << endl;
        sleep(rand()%5+1);
        cout << no << " is hunger" << endl;
        wait_2fork(no); //获取两把刀叉
        //进餐
        cout << "++ " << no << " is eating" << endl;
        sleep(rand()%5+1);
        signal_2fork(no);//释放两把刀叉
    }
}
int main()
{
    // 创建一个信号量集: 里面包含5个信号量
    semid = semget(IPC_PRIVATE, 5, IPC_CREAT|0666);
    if (semid == -1)
        err_exit("semget error");

    //将每个信号量都设初值为1
    union semun su;
    su.val = 1;
    for (int i = 0; i < 5; ++i)
        if (semctl(semid, i, SETVAL, su) == -1)
            err_exit("semctl SETVAL error");

    //创建四个子进程, 将每个进程的编号设定为no
    pid_t pid;
    unsigned short no = 0;
    for (unsigned short i = 0; i < 4; ++i)
    {
        pid = fork();
        if (pid == -1)
            err_exit("fork error");
        else if (pid == 0)
        {
            no = i+1;
            break;
        }
    }

    // 最后五个进程(4个子进程+1个父进程)都会汇集到此处,
    // 每个进程代表着一个哲学家,编号no: 0~4
    philosopher(no);

    return 0;
}

目录
相关文章
|
6天前
|
关系型数据库 MySQL Linux
Linux环境下MySQL数据库自动定时备份实践
数据库备份是确保数据安全的重要措施。在Linux环境下,实现MySQL数据库的自动定时备份可以通过多种方式完成。本文将介绍如何使用`cron`定时任务和`mysqldump`工具来实现MySQL数据库的每日自动备份。
19 3
|
13天前
|
消息中间件 存储 Linux
|
25天前
|
监控 Linux 云计算
Linux操作系统在云计算环境中的实践与优化###
【10月更文挑战第16天】 本文探讨了Linux操作系统在云计算环境中的应用实践,重点分析了其在稳定性、安全性和高效性方面的优势。通过具体案例,阐述了Linux如何支持虚拟化技术、实现资源高效分配以及与其他开源技术的无缝集成。文章还提供了针对Linux系统在云计算中的优化建议,包括内核参数调整、文件系统选择和性能监控工具的应用,旨在帮助读者更好地理解和应用Linux于云计算场景。 ###
31 3
|
1月前
|
消息中间件 Linux API
Linux c/c++之IPC进程间通信
这篇文章详细介绍了Linux下C/C++进程间通信(IPC)的三种主要技术:共享内存、消息队列和信号量,包括它们的编程模型、API函数原型、优势与缺点,并通过示例代码展示了它们的创建、使用和管理方法。
29 0
Linux c/c++之IPC进程间通信
|
1月前
|
Ubuntu Linux
Linux实践|设置静态 IP 地址
Linux实践|设置静态 IP 地址
61 0
Linux实践|设置静态 IP 地址
|
2月前
|
Docker 容器
14 response from daemon: open \\.\pipe\docker_engine_linux: The system cannot find the file speci
14 response from daemon: open \\.\pipe\docker_engine_linux: The system cannot find the file speci
32 1
|
3月前
|
存储 人工智能 数据管理
深入理解Linux操作系统之文件系统管理探索人工智能:从理论到实践的旅程
【8月更文挑战第30天】在探索Linux的无限可能时,我们不可避免地会遇到文件系统管理这一核心话题。本文将深入浅出地介绍Linux文件系统的基础知识、操作命令及高级技巧,帮助你更有效地管理和维护你的系统。从基础概念到实践应用,我们将一步步揭开Linux文件系统的神秘面纱。
|
2月前
|
Linux
linux内核 —— 读写信号量实验
linux内核 —— 读写信号量实验
|
3月前
|
开发者 API Windows
从怀旧到革新:看WinForms如何在保持向后兼容性的前提下,借助.NET新平台的力量实现自我进化与应用现代化,让经典桌面应用焕发第二春——我们的WinForms应用转型之路深度剖析
【8月更文挑战第31天】在Windows桌面应用开发中,Windows Forms(WinForms)依然是许多开发者的首选。尽管.NET Framework已演进至.NET 5 及更高版本,WinForms 仍作为核心组件保留,支持现有代码库的同时引入新特性。开发者可将项目迁移至.NET Core,享受性能提升和跨平台能力。迁移时需注意API变更,确保应用平稳过渡。通过自定义样式或第三方控件库,还可增强视觉效果。结合.NET新功能,WinForms 应用不仅能延续既有投资,还能焕发新生。 示例代码展示了如何在.NET Core中创建包含按钮和标签的基本窗口,实现简单的用户交互。
66 0
|
消息中间件 Linux
Linux IPC实践(6) --System V消息队列(3)
消息队列综合案例 消息队列实现回射客户/服务器  server进程接收时, 指定msgtyp为0, 从队首不断接收消息 server进程发送时, 将mtype指定为接收到的client进程的p...
961 0