虽然前面我们已经集中学习过Query,但CustomScoreQuery当初略过了,今天就来学学这个Query.从类名上看,顾名思义,就大不略的猜得到它的干嘛用的。它是用来进行干预查询权重的,从而影响最终评分的,即评分公式中的queryNorm部分。
一个索引文档的评分高低意味着它的价值大小,有价值的索引文档会优先返回并靠前显示,而影响评分的因素有Term在document中的出现频率,以及term在每个document中的出现频率,Term的权重等等,但这些因素都是固定的,并不会因为随着时间的改变而有所变化。比如你希望越是新出版的书籍权重应该越高,即出版日期距离当前时间越近权重越大。再比如你想实现我关注的用户发表的文章优先靠前显示,非关注用户发表的文章靠后显示等等,而CustomScoreQuery提供了这样一个接口来实现类似上述场景中的需求。你要做的就是
继承RecencyBoostCustomScoreQuery提供自己的CustomScoreProvider实现并重写其customScore方法,编写自己的实现逻辑。
下面是使用示例:
- package com.yida.framework.lucene5.function;
- import java.io.IOException;
- import org.apache.lucene.index.LeafReaderContext;
- import org.apache.lucene.index.NumericDocValues;
- import org.apache.lucene.index.SortedDocValues;
- import org.apache.lucene.queries.CustomScoreProvider;
- public class RecencyBoostCustomScoreProvider extends CustomScoreProvider {
- //权重倍数
- private double multiplier;
- // 从1970-01-01至今的总天数
- private int day;
- // 最大过期天数
- private int maxDaysAgo;
- // 日期域的名称
- private String dayField;
- // 域缓存值
- private NumericDocValues publishDay;
- private SortedDocValues titleValues;
- public RecencyBoostCustomScoreProvider(LeafReaderContext context,double multiplier,int day,int maxDaysAgo,String dayField) {
- super(context);
- this.multiplier = multiplier;
- this.day = day;
- this.maxDaysAgo = maxDaysAgo;
- this.dayField = dayField;
- try {
- publishDay = context.reader().getNumericDocValues(dayField);
- titleValues = context.reader().getSortedDocValues("title2");
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
- /**
- * subQueryScore:指的是普通Query查询的评分
- * valSrcScore:指的是FunctionQuery查询的评分
- */
- @Override
- public float customScore(int docId, float subQueryScore, float valSrcScore)
- throws IOException {
- String title = titleValues.get(docId).utf8ToString();
- int daysAgo = (int) (day - publishDay.get(docId));
- //System.out.println(title + ":" + daysAgo + ":" + maxDaysAgo);
- //如果在6年之内
- if (daysAgo < maxDaysAgo) {
- float boost = (float) (multiplier * (maxDaysAgo - daysAgo) / maxDaysAgo);
- return (float) (subQueryScore * (1.0 + boost));
- }
- return subQueryScore;
- }
- }
- package com.yida.framework.lucene5.function;
- import java.io.IOException;
- import org.apache.lucene.index.LeafReaderContext;
- import org.apache.lucene.queries.CustomScoreProvider;
- import org.apache.lucene.queries.CustomScoreQuery;
- import org.apache.lucene.search.Query;
- public class RecencyBoostCustomScoreQuery extends CustomScoreQuery {
- // 倍数
- private double multiplier;
- // 从1970-01-01至今的总天数
- private int day;
- // 最大过期天数
- private int maxDaysAgo;
- // 日期域的名称
- private String dayField;
- public RecencyBoostCustomScoreQuery(Query subQuery,double multiplier,int day,int maxDaysAgo,String dayField) {
- super(subQuery);
- this.multiplier = multiplier;
- this.day = day;
- this.maxDaysAgo = maxDaysAgo;
- this.dayField = dayField;
- }
- @Override
- protected CustomScoreProvider getCustomScoreProvider(
- LeafReaderContext context) throws IOException {
- return new RecencyBoostCustomScoreProvider(context,multiplier,day,maxDaysAgo,dayField);
- }
- }
- package com.yida.framework.lucene5.function;
- import java.io.IOException;
- import java.nio.file.Paths;
- import java.util.Date;
- import org.apache.lucene.analysis.standard.StandardAnalyzer;
- import org.apache.lucene.document.Document;
- import org.apache.lucene.index.DirectoryReader;
- import org.apache.lucene.index.IndexReader;
- import org.apache.lucene.queryparser.classic.ParseException;
- import org.apache.lucene.queryparser.classic.QueryParser;
- import org.apache.lucene.search.IndexSearcher;
- import org.apache.lucene.search.Query;
- import org.apache.lucene.search.Sort;
- import org.apache.lucene.search.SortField;
- import org.apache.lucene.search.TopDocs;
- import org.apache.lucene.store.Directory;
- import org.apache.lucene.store.FSDirectory;
- import com.yida.framework.lucene5.util.Constans;
- /**
- * CustomScoreQuery测试
- * @author Lanxiaowei
- *
- */
- public class CustomScoreQueryTest {
- public static void main(String[] args) throws IOException, ParseException {
- String indexDir = "C:/lucenedir";
- Directory directory = FSDirectory.open(Paths.get(indexDir));
- IndexReader reader = DirectoryReader.open(directory);
- IndexSearcher searcher = new IndexSearcher(reader);
- int day = (int) (new Date().getTime() / Constans.PRE_DAY_MILLISECOND);
- QueryParser parser = new QueryParser("contents",new StandardAnalyzer());
- Query query = parser.parse("java in action");
- Query customScoreQuery = new RecencyBoostCustomScoreQuery(query,2.0,day, 6*365,"pubmonthAsDay");
- Sort sort = new Sort(new SortField[] {SortField.FIELD_SCORE,
- new SortField("title2", SortField.Type.STRING)});
- TopDocs hits = searcher.search(customScoreQuery, null, Integer.MAX_VALUE, sort,true,false);
- for (int i = 0; i < hits.scoreDocs.length; i++) {
- //两种方式取Document都行,其实searcher.doc内部本质还是调用reader.document
- //Document doc = reader.document(hits.scoreDocs[i].doc);
- Document doc = searcher.doc(hits.scoreDocs[i].doc);
- System.out.println((1+i) + ": " +
- doc.get("title") +
- ": pubmonth=" +
- doc.get("pubmonth") +
- " score=" + hits.scoreDocs[i].score);
- }
- reader.close();
- directory.close();
- }
- }
- package com.yida.framework.lucene5.sort;
- import java.io.File;
- import java.io.FileInputStream;
- import java.io.IOException;
- import java.nio.file.Paths;
- import java.text.ParseException;
- import java.util.ArrayList;
- import java.util.Date;
- import java.util.List;
- import java.util.Properties;
- import org.apache.lucene.analysis.Analyzer;
- import org.apache.lucene.analysis.standard.StandardAnalyzer;
- import org.apache.lucene.document.BinaryDocValuesField;
- import org.apache.lucene.document.DateTools;
- import org.apache.lucene.document.Document;
- import org.apache.lucene.document.Field;
- import org.apache.lucene.document.IntField;
- import org.apache.lucene.document.NumericDocValuesField;
- import org.apache.lucene.document.SortedDocValuesField;
- import org.apache.lucene.document.SortedNumericDocValuesField;
- import org.apache.lucene.document.StringField;
- import org.apache.lucene.document.TextField;
- import org.apache.lucene.index.IndexWriter;
- import org.apache.lucene.index.IndexWriterConfig;
- import org.apache.lucene.index.IndexWriterConfig.OpenMode;
- import org.apache.lucene.store.Directory;
- import org.apache.lucene.store.FSDirectory;
- import org.apache.lucene.util.BytesRef;
- /**
- * 创建测试索引
- * @author Lanxiaowei
- *
- */
- public class CreateTestIndex {
- public static void main(String[] args) throws IOException {
- String dataDir = "C:/data";
- String indexDir = "C:/lucenedir";
- Directory dir = FSDirectory.open(Paths.get(indexDir));
- Analyzer analyzer = new StandardAnalyzer();
- IndexWriterConfig indexWriterConfig = new IndexWriterConfig(analyzer);
- indexWriterConfig.setOpenMode(OpenMode.CREATE_OR_APPEND);
- IndexWriter writer = new IndexWriter(dir, indexWriterConfig);
- List<File> results = new ArrayList<File>();
- findFiles(results, new File(dataDir));
- System.out.println(results.size() + " books to index");
- for (File file : results) {
- Document doc = getDocument(dataDir, file);
- writer.addDocument(doc);
- }
- writer.close();
- dir.close();
- }
- /**
- * 查找指定目录下的所有properties文件
- *
- * @param result
- * @param dir
- */
- private static void findFiles(List<File> result, File dir) {
- for (File file : dir.listFiles()) {
- if (file.getName().endsWith(".properties")) {
- result.add(file);
- } else if (file.isDirectory()) {
- findFiles(result, file);
- }
- }
- }
- /**
- * 读取properties文件生成Document
- *
- * @param rootDir
- * @param file
- * @return
- * @throws IOException
- */
- public static Document getDocument(String rootDir, File file)
- throws IOException {
- Properties props = new Properties();
- props.load(new FileInputStream(file));
- Document doc = new Document();
- String category = file.getParent().substring(rootDir.length());
- category = category.replace(File.separatorChar, '/');
- String isbn = props.getProperty("isbn");
- String title = props.getProperty("title");
- String author = props.getProperty("author");
- String url = props.getProperty("url");
- String subject = props.getProperty("subject");
- String pubmonth = props.getProperty("pubmonth");
- System.out.println("title:" + title + "\n" + "author:" + author + "\n" + "subject:" + subject + "\n"
- + "pubmonth:" + pubmonth + "\n" + "category:" + category + "\n---------");
- doc.add(new StringField("isbn", isbn, Field.Store.YES));
- doc.add(new StringField("category", category, Field.Store.YES));
- doc.add(new SortedDocValuesField("category", new BytesRef(category)));
- doc.add(new TextField("title", title, Field.Store.YES));
- doc.add(new Field("title2", title.toLowerCase(), Field.Store.YES,
- Field.Index.NOT_ANALYZED_NO_NORMS,
- Field.TermVector.WITH_POSITIONS_OFFSETS));
- //doc.add(new BinaryDocValuesField("title2", new BytesRef(title.getBytes())));
- doc.add(new SortedDocValuesField("title2", new BytesRef(title.getBytes())));
- String[] authors = author.split(",");
- for (String a : authors) {
- doc.add(new Field("author", a, Field.Store.YES,
- Field.Index.NOT_ANALYZED,
- Field.TermVector.WITH_POSITIONS_OFFSETS));
- }
- doc.add(new Field("url", url, Field.Store.YES,
- Field.Index.NOT_ANALYZED_NO_NORMS));
- doc.add(new Field("subject", subject, Field.Store.YES,
- Field.Index.ANALYZED, Field.TermVector.WITH_POSITIONS_OFFSETS));
- doc.add(new IntField("pubmonth", Integer.parseInt(pubmonth),
- Field.Store.YES));
- doc.add(new NumericDocValuesField("pubmonth", Integer.parseInt(pubmonth)));
- Date d = null;
- try {
- d = DateTools.stringToDate(pubmonth);
- } catch (ParseException pe) {
- throw new RuntimeException(pe);
- }
- int day = (int) (d.getTime() / (1000 * 3600 * 24));
- doc.add(new IntField("pubmonthAsDay",day, Field.Store.YES));
- doc.add(new NumericDocValuesField("pubmonthAsDay", day));
- for (String text : new String[] { title, subject, author, category }) {
- doc.add(new Field("contents", text, Field.Store.NO,
- Field.Index.ANALYZED,
- Field.TermVector.WITH_POSITIONS_OFFSETS));
- }
- return doc;
- }
- }
重点在创建索引域那里,由于我们需要在CustomScoreQuery里获取指定域的所有值,随后根据文档ID去获取特定域的值,这里Lucene使用了FieldCache即域缓存,如果不用域缓存,我们需要根据docId通过IndexReader对象去索引目录读取每个段文件从而获取某个域的值,一个文档意味着一次磁盘IO,如果你索引文档数据量大的话,那后果将会很严重,你懂的,为了减少磁盘IO次数,Lucene引入了域缓存概念,其实内部就是用一个Map<String,Object> 来存储的,map的key就是域的名称,看源码:
IndexReader.getNumericDocValues
- @Override
- public final NumericDocValues getNumericDocValues(String field) throws IOException {
- ensureOpen();
- Map<String,Object> dvFields = docValuesLocal.get();
- Object previous = dvFields.get(field);
- if (previous != null && previous instanceof NumericDocValues) {
- return (NumericDocValues) previous;
- } else {
- FieldInfo fi = getDVField(field, DocValuesType.NUMERIC);
- if (fi == null) {
- return null;
- }
- NumericDocValues dv = getDocValuesReader().getNumeric(fi);
- dvFields.put(field, dv);
- return dv;
- }
- }
还有一点需要注意的是域缓存只对DocValuesField有效,这也是为什么创建索引代码那里需要add SortedDocValuesField,因为我们还需要根据该域进行排序,所以使用了SortedDocValuesField,
字符串类型可以用BinaryDocValuesField,数字类型可以使用NumericDocValuesField.域缓存是Lucene内部的一个高级API,对于用户来说,它是透明的,你只需要知道,使用DocValuesField可以利用域缓存来提升查询性能,但缓存也意味着需要有更多的内存消耗,所以在使用之前请进行性能测试,至于到底使不使用域缓存根据测试结果做好权衡。当你需要在Query查询内部去获取每个索引的某个域的值的时候,你就应该考虑使用域缓存。对于给定的IndexReader和指定的域,在首次访问域缓存的时候,会加载所有索引的该域的values放入缓存中(其实就是内存),是根据indexReader和域名两者联合起来确定唯一性,换句话说,你应该在多次查询中维持同一个IndexReader对象,因为每一个IndexReader都会有一套域缓存,如果你每次都new一个新的IndexReader,你会在内存中N个域缓存,这无疑是在内存中埋了N颗定时乍弹,而且这些你也无法利用域缓存。
如果你还有什么问题请加我Q-Q:7-3-6-0-3-1-3-0-5,
或者加裙
一起交流学习!
转载:http://iamyida.iteye.com/blog/2200742