Hive数据压缩笔记

简介: Hive数据压缩本文介绍Hadoop系统中Hive数据压缩方案的比较结果及具体压缩方法。

Hive数据压缩

本文介绍Hadoop系统中Hive数据压缩方案的比较结果及具体压缩方法。

一、压缩方案比较

关于Hadoop HDFS文件的压缩格式选择,我们通过多个真实的Track数据做测试,得出结论如下:

1.  系统的默认压缩编码方式 DefaultCodec 无论在压缩性能上还是压缩比上,都优于GZIP 压缩编码。这一点与网上的一些观点不大一致,网上不少人认为GZIP的压缩比要高一些,估计和Cloudera的封装及我们Track的数据类型有关。

2.  Hive文件的RCFile 的在压缩比,压缩效率,及查询效率上都优于SEQENCE FILE (包括RECORD, BLOCK 级别) 。

3.  所有压缩文件均可以正常解压为TEXT 文件,但比原始文件略大,可能是行列重组造成的。

 

关于压缩文件对于其他组件是适用性如下:

1.  Pig 不支持任何形式的压缩文件。

2.  Impala 目前支持SequenceFile的压缩格式,但还不支持RCFile的压缩格式。

 

综上所述

从压缩及查询的空间和时间性能上来说,DefaultCodeC + RCFile的压缩方式均为最优,但使用该方式,会使得Pig 和Impala 无法使用(Impala的不兼容不确定是否是暂时的)。

而DefaultCodeC+ SequenceFile 在压缩比,查询性能上略差于RCFile (压缩比约 6:5), 但可以支持 Impala实时查询。

 

 

 

推荐方案

 

 采用RCFile 方式压缩历史数据。FackBook全部hive表都用RCFile存数据。

二、局部压缩方法

只需要两步:

1.      创建表时指定压缩方式,默认不压缩,以下为示例:

create external table track_hist(

id bigint, url string, referer string, keyword string, type int, gu_idstring,

…/*此处省略中间部分字段*/ …, string,ext_field10 string)

partitioned by (ds string) stored as RCFile location '/data/share/track_histk' ;

 

2.  插入数据是设定立即压缩

SET hive.exec.compress.output=true;

insert overwrite table track_histpartition(ds='2013-01-01')

select id,url, …/*此处省略中间部分字段*/ …, ext_field10 fromtrackinfo

where ds='2013-01-01';

 

 

三、全局方式,修改属性文件

 

在hive-site.xml中设置:

<property>

 <name>hive.default.fileformat</name>

 <value>RCFile</value>

 <description>Default file format for CREATE TABLE statement.Options are TextFile and SequenceFile. Users can explicitly say CREAT

E TABLE ... STORED AS&lt;TEXTFILE|SEQUENCEFILE&gt; to override</description>

</property>

<property>

 <name>hive.exec.compress.output</name>

 <value>true</value>

 <description> This controls whether the final outputs of a query(to a local/hdfs file or a hive table) is compressed. The compres

sion codec and other options are determinedfrom hadoop config variables mapred.output.compress* </description>

</property>

 

四、注意事项

1、Map阶段输出不进行压缩

2、对输出文本进行处理时不压缩

目录
相关文章
|
3月前
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
67 4
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
125 3
|
3月前
|
SQL
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
57 2
|
3月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
152 0
|
5月前
|
SQL 物联网 数据处理
"颠覆传统,Hive SQL与Flink激情碰撞!解锁流批一体数据处理新纪元,让数据决策力瞬间爆表,你准备好了吗?"
【8月更文挑战第9天】数据时代,实时性和准确性至关重要。传统上,批处理与流处理各司其职,但Apache Flink打破了这一界限,尤其Flink与Hive SQL的结合,开创了流批一体的数据处理新时代。这不仅简化了数据处理流程,还极大提升了效率和灵活性。例如,通过Flink SQL,可以轻松实现流数据与批数据的融合分析,无需在两者间切换。这种融合不仅降低了技术门槛,还为企业提供了更强大的数据支持,无论是在金融、电商还是物联网领域,都将发挥巨大作用。
77 6
|
5月前
|
SQL 关系型数据库 HIVE
实时计算 Flink版产品使用问题之如何将PostgreSQL数据实时入库Hive并实现断点续传
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL 分布式计算 数据处理
实时计算 Flink版产品使用问题之怎么将数据从Hive表中读取并写入到另一个Hive表中
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版操作报错合集之从mysql读数据写到hive报错,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
5月前
|
SQL 存储 分布式计算

热门文章

最新文章