深入理解linux互斥锁(mutex)

简介: 锁机制,可以说是linux整个系统的精髓所在,linux内核都是围绕着同步在运转。在多进程和多线程编程中,锁起着极其重要的作用。

锁机制,可以说是linux整个系统的精髓所在,linux内核都是围绕着同步在运转。在多进程和多线程编程中,锁起着极其重要的作用。我这里说的是互斥锁,其实是泛指linux中所有的锁机制。我在这里不讲如果创建锁,关于锁的创建,网上代码很多,我在这里就不多说了。我要谈一谈一个让所有刚刚接触锁机制的程序员都很困惑的问题:如何使用以及锁机制在程序中是如何运作的。

 

 一、定义:
/linux/include/linux/mutex.h
47struct mutex {
  48        /* 1: unlocked, 0: locked, negative: locked, possible waiters */
  49        atomic_t                count;
  50        spinlock_t              wait_lock;
  51        struct list_head        wait_list;
  52#ifdef CONFIG_DEBUG_MUTEXES
  53        struct thread_info      *owner;
  54        const char              *name;
  55        void                    *magic;
  56#endif
  57#ifdef CONFIG_DEBUG_LOCK_ALLOC
  58        struct lockdep_map      dep_map;
  59#endif
  60};

二、作用及访问规则:
互斥锁主要用于实现内核中的互斥访问功能。内核互斥锁是在原子 API 之上实现的,但这对于内核用户是不可见的。对它的访问必须遵循一些规则:同一时间只能有一个任务持有互斥锁,而且只有这个任务可以对互斥锁进行解锁。互斥锁不能进行递归锁定或解锁。一个互斥锁对象必须通过其API初始化,而不能使用memset或复制初始化。一个任务在持有互斥锁的时候是不能结束的。互斥锁所使用的内存区域是不能被释放的。使用中的互斥锁是不能被重新初始化的。并且互斥锁不能用于中断上下文。但是互斥锁比当前的内核信号量选项更快,并且更加紧凑,因此如果它们满足您的需求,那么它们将是您明智的选择。
三、各字段详解:
1、atomic_t count;
指示互斥锁的状态:
1 没有上锁,可以获得
0 被锁定,不能获得
负数 被锁定,且可能在该锁上有等待进程
初始化为没有上锁。
2、spinlock_t wait_lock;
等待获取互斥锁中使用的自旋锁。在获取互斥锁的过程中,操作会在自旋锁的保护中进行。初始化为为锁定。
3、struct list_head wait_list;
等待互斥锁的进程队列。
四、操作:
1、定义并初始化:
struct mutex mutex;
mutex_init(&mutex);
79# define mutex_init(mutex) \
80do { \
81 static struct lock_class_key __key; \
82 \
83 __mutex_init((mutex), #mutex, &__key); \
84} while (0)
42void
43__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
44{
45 atomic_set(&lock->count, 1);
46 spin_lock_init(&lock->wait_lock);
47 INIT_LIST_HEAD(&lock->wait_list);
48
49 debug_mutex_init(lock, name, key);
50}
直接定于互斥锁mutex并初始化为未锁定,己count为1,wait_lock为未上锁,等待队列wait_list为空。
2、获取互斥锁:
(1)具体参见linux/kernel/mutex.c
void inline fastcall __sched mutex_lock(struct mutex *lock);
获取互斥锁。实际上是先给count做自减操作,然后使用本身的自旋锁进入临界区操作。首先取得count的值,在将count置为-1,判断如果原来count的置为1,也即互斥锁可以获得,则直接获取,跳出。否则进入循环反复测试互斥锁的状态。在循环中,也是先取得互斥锁原来的状态,在将其之为-1,判断如果可以获取(等于1),则退出循环,否则设置当前进程的状态为不可中断状态,解锁自身的自旋锁,进入睡眠状态,待被在调度唤醒时,再获得自身的自旋锁,进入新一次的查询其自身状态(该互斥锁的状态)的循环。
(2)具体参见linux/kernel/mutex.c
int fastcall __sched mutex_lock_interruptible(struct mutex *lock);
和mutex_lock()一样,也是获取互斥锁。在获得了互斥锁或进入睡眠直到获得互斥锁之后会返回0。如果在等待获取锁的时候进入睡眠状态收到一个信号(被信号打断睡眠),则返回_EINIR。
(3)具体参见linux/kernel/mutex.c
int fastcall __sched mutex_trylock(struct mutex *lock);
试图获取互斥锁,如果成功获取则返回1,否则返回0,不等待。
3、释放互斥锁:
具体参见linux/kernel/mutex.c
void fastcall mutex_unlock(struct mutex *lock);
释放被当前进程获取的互斥锁。该函数不能用在中断上下文中,而且不允许去释放一个没有上锁的互斥锁。
五、使用形式:
struct mutex mutex;
mutex_init(&mutex); /*定义*/
...
mutex_lock(&mutex); /*获取互斥锁*/
... /*临界资源*/
mutex_unlock(&mutex); /*释放互斥锁*/


为什么要使用锁

这个就比较简单,linux里面,锁的种类很多,包括互斥锁,文件锁,读写锁······其实信号量说白了也是一种锁。使用锁的目的是达到同步的作用,使共享资源在同一时间内,只有能有一个进程或者线程对他进行操作。

 

 

linux是如何通过锁来实现对数据的保护和维护的

这个问题是我要将的重点。很多刚刚接触锁机制的程序员,都会犯这种错误。比如,此时有2个线程,分别是线程A,线程B。A和B共享了资源M。为了同步A和B,使得同一时刻,同意时刻,只有一个线程对M操作。于是,很自然的会在A中对M资源先lock,等到A对M操作完毕之后,然后做一个操作unlock。B中则因为A加了锁,B就直接操作M。这个时候,你会发现,B同样可以操作到M。这个是为什么呢?

 

我们利索当然的把检测锁的任务交给了操作系统,交给了内核。可以翻看APUE上对于所的讲解,其中一部分是这么写的:

 

This mutual-exclusion mechanism works only if we design our threads to follow the same data-access rules. The operating system doesn't serialize access to data for us. If we allow one thread to access a shared resource without first acquiring a lock, then inconsistencies can occur even though the rest of our threads do acquire the lock before attempting to access the shared resource.


 

这里This mutual-exclusion mechanism指的就是锁机制。说的很清楚,只有程序员设计线程的时候,都遵循同一种数据访问规则,锁机制才会起作用。操作系统不会为我们序列化数据访问,也就是说,操作系统不会为我们拟定任何数据访问顺序,到底是A在先还是B在先,操作系统不会为我们规定。如果我们允许一个线程在没有多的锁(lock)之前,就对共享数据进行访问操作,那么,即使我们其他的线程都在访问之前试图去先锁住资源(获取锁),同样会导致数据访问不一致,即多个线程同时在操作共享资源。

    从上面文字可以看出,操作系统不会为我们去检查,此时是不是有线程已经把资源锁住了。为了使锁能够正常工作,为了保护共享资源,我们只有在设计线程的时候,所有线程都用同一种方法去访问共享数据,也就是访问数据之前,务必先获取锁,然后再操作,操作完之后要解锁(unlock)。操作系统提供锁机制,就是提供了一种所有程序员都必须遵循的规范。而不是说我们锁住资源,其他线程访问共享资源的时候,让操作系统去为我们检查数据是否有其他的线程在操作。

目录
相关文章
|
8天前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
20天前
|
算法 Linux 开发者
Linux内核中的锁机制:保障并发控制的艺术####
本文深入探讨了Linux操作系统内核中实现的多种锁机制,包括自旋锁、互斥锁、读写锁等,旨在揭示这些同步原语如何高效地解决资源竞争问题,保证系统的稳定性和性能。通过分析不同锁机制的工作原理及应用场景,本文为开发者提供了在高并发环境下进行有效并发控制的实用指南。 ####
|
1月前
|
Linux 数据库
Linux内核中的锁机制:保障并发操作的数据一致性####
【10月更文挑战第29天】 在多线程编程中,确保数据一致性和防止竞争条件是至关重要的。本文将深入探讨Linux操作系统中实现的几种关键锁机制,包括自旋锁、互斥锁和读写锁等。通过分析这些锁的设计原理和使用场景,帮助读者理解如何在实际应用中选择合适的锁机制以优化系统性能和稳定性。 ####
52 6
|
2月前
|
安全 Linux
Linux线程(十一)线程互斥锁-条件变量详解
Linux线程(十一)线程互斥锁-条件变量详解
|
4月前
|
监控 关系型数据库 MySQL
在Linux中,mysql的innodb如何定位锁问题?
在Linux中,mysql的innodb如何定位锁问题?
|
4月前
|
Linux API 调度
重温Linux内核:互斥和同步
本文全面回顾了Linux内核中的互斥和同步机制,包括中断屏蔽、原子变量、自旋锁、读写锁、顺序锁、信号量、互斥量、RCU机制以及完成量等,提供了它们的定义、实现原理、API用法和使用时的注意事项。
62 0
|
6月前
|
监控 Linux 数据处理
lslocks:Linux系统中的锁信息查看利器
`lslocks`是Linux工具,用于查看系统上的文件锁信息,帮助诊断进程同步问题。它显示持有锁的进程、锁类型(如POSIX、flock)和状态。通过简洁的输出,用户能识别死锁和资源争用,优化性能。结合其他命令如`grep`和`awk`可增强分析能力。需适当权限运行,定期监控以预防并发访问问题,处理死锁时要谨慎。
|
6月前
|
API
linux---线程互斥锁总结及代码实现
linux---线程互斥锁总结及代码实现
|
6月前
|
API
Linux---线程读写锁详解及代码实现
Linux---线程读写锁详解及代码实现
|
5月前
|
安全 算法 Linux
【Linux】线程安全——补充|互斥、锁|同步、条件变量(下)
【Linux】线程安全——补充|互斥、锁|同步、条件变量(下)
53 0