微表情训练

简介: http://www.paulekman.com/
目录
打赏
0
0
0
0
680
分享
相关文章
《深度剖析:生成对抗网络如何实现图像风格的细腻逼真迁移》
生成对抗网络(GAN)在图像风格迁移中展现出巨大潜力。GAN由生成器和判别器组成,通过对抗训练生成逼真图像。相比传统方法,GAN能自动学习深层特征,生成多样化、细腻的风格,并实现高效处理。关键技术如多尺度训练、注意力机制及损失函数优化进一步提升了效果。GAN已广泛应用于艺术创作、游戏开发和影视制作等领域,未来有望带来更多创新应用。
扩散模型失宠?端侧非自回归图像生成基础模型Meissonic登场,超越SDXL!
Meissonic是一种新型图像生成模型,采用非自回归的掩码图像建模(MIM)方法,在性能和效率上超越了当前最先进的扩散模型SDXL。其创新点包括改进的注意力机制、多尺度特征提取、先进位置编码策略和优化采样条件等,能够生成高质量、高分辨率图像。此外,Meissonic引入人类偏好评分和特征压缩层,提升图像质量和计算效率。尽管存在一些挑战,Meissonic为统一语言-视觉模型的发展提供了新思路,并在创意设计、虚拟现实等领域展现出广泛应用前景。
81 24
【一步步开发AI运动小程序】十、姿态动作相似度比较
本文介绍如何利用“云智AI运动识别小程序插件”开发AI运动小程序,重点讲解姿态动作相似度比较功能的运用,包括样本动作帧的采集和姿态相似度的计算方法,以及在组合运动中的应用实例。
声纹识别实战:从数据采集到模型训练
【10月更文挑战第16天】声纹识别技术通过分析个人的语音特征来验证其身份,具有无接触、便捷的特点。本文将带你从零开始,一步步完成声纹识别系统的构建,包括数据采集、音频预处理、特征提取、模型训练及评估等关键步骤。我们将使用Python语言和相关的科学计算库来进行实践。
699 0
给视频模型安上快慢两只眼睛,苹果免训练新方法秒了一切SOTA
【9月更文挑战第5天】近年来,视频大型语言模型(LLM)在计算机视觉领域取得显著进展,但高昂的监督微调成本成为瓶颈。苹果研究人员提出了免训练的SF-LLaVA模型,采用慢流(捕捉空间语义)和快流(捕捉时序上下文)的双流设计,能高效处理视频中的静态与动态信息,显著提升了开放性视频问答、多选视频问答及文本生成等任务的表现。然而,该模型在复杂视频场景理解和特定任务泛化能力方面仍有局限。论文详见:https://arxiv.org/pdf/2407.15841
52 1
|
8月前
使用高性能服务器训练StableDiffusion——人物模型.safetensors
使用高性能服务器训练StableDiffusion——人物模型.safetensors
81 0
【OpenVI-图像超分实战篇】别用GAN做超分了,快来试试基于扩散模型的图像超分吧!
近10年来,深度学习技术得到了长足进步,在图像增强领域取得了显著的成果,尤其是以GAN为代表的生成式模型在图像复原、老片修复,图像超分辨率等方面大放异彩。图像超分辨率是视频增强方面,用于提升画质的典型应用。生成对抗网络GAN使得在图像分辨率增加的同时,保持细节特征,补充生成真实的纹理,其中应用广泛的工作是Real-ESRGAN。 扩散模型DiffusionModel在图像超分辨率这方面的新的应用,展现出其超过GAN的生成多样性和真实性。看完后,你会发现,还在用GAN做图像超分辨率吗?已经OUT了,快来试试DiffusionModel吧!
27379 3
【OpenVI-图像超分实战篇】别用GAN做超分了,快来试试基于扩散模型的图像超分吧!
ELITE项目原作解读:基于扩散模型的快速定制化图像生成
ELITE项目原作解读:基于扩散模型的快速定制化图像生成
172 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等