hadoop下mahout bayes(贝叶斯)算法研究(1)-阿里云开发者社区

开发者社区> 大数据> 正文

hadoop下mahout bayes(贝叶斯)算法研究(1)

简介: http://blog.csdn.net/zc55803903/article/details/7933126 1.算法简介 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率哪个最大,就认为此待分类项属于哪个类别。

http://blog.csdn.net/zc55803903/article/details/7933126

1.算法简介

朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率哪个最大,就认为此待分类项属于哪个类别。

这二十个新闻组数据集合是收集大约20,000新闻组文档,均匀的分布在20个不同的集合。这20个新闻组集合采集最近流行的数据集合到文本程序中作为实验,根据机器学习技术。例如文本分类,文本聚集。我们将使用MahoutBayes Classifier创造一个模型,它将一个新文档分类到这20个新闻组集合范例演示

2.环境要求

hadoop已经开启

mahout已经安装

3.数据的准备

下载20news-bydate.tar.gz数据包并解压缩

http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz

例如:我已经把数据包放在/root/bayes下了,所以以下的命令都是在这个目录下的

原以为这么20个文件是不可以一起输出的,但事实证明是可以的

4.算法流程

5.数据输入与输出准备过程

5.1生成input的数据

mahout org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups -p/root/bayes/20news-bydate-train -o /root/bayesoutput/train -a org.apache.mahout.vectorizer.DefaultAnalyzer -c UTF-8

5.2生成test的数据

mahout org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups -p/root/bayes/20news-bydate-test -o /root/bayesoutput/test -a org.apache.mahout.vectorizer.DefaultAnalyzer -c UTF-8

6.Hadoop中执行命令与过程

上传文件到HDFS

hadoop fs -put  /root/bayesoutput/train/ bayes

7.算法执行命令与过程

下面将在hadoop运行4个map reduce工作,为了Train这个分器并且将运行一段时间如果在只有一个节点的机器上

mahout trainclassifier -i /bayes/train/ -o newsmodel -type bayes -ng 3 -source hdfs由于hadoop集群未开,这条命令暂时没用

mahout trainclassifier -i /root/bayesoutput/train -o newsmodel -type bayes -ng 3 –source hdfs本地测试)

由于案例数据较多,跑了将近30分钟,新的newmodel的大小有300mb

可以通过http://localhost:50030/jobtracker.jsp来监控job的状态

input目录运行Test分类器

mahout testclassifier -m newsmodel -d /root/bayesoutput/test/ -type bayes -ng 3 -source hdfs -method mapreduce

                         

8.输出结果参考:

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
大数据
使用钉钉扫一扫加入圈子
+ 订阅

大数据计算实践乐园,近距离学习前沿技术

其他文章