图像处理之快速均值模糊(Box Blur)

简介: 图像处理之快速均值模糊(Box Blur)   图像模糊的本质, 从数字信号处理的角度看,图像模糊就要压制高频信号保留低频信号, 压制高频的信号的一个可选择的方法就是卷积滤波。选择一个低频滤波器,对图像上的 每个像素实现低频滤波,这样整体效果就是一张数字图像更加的模糊,显示更少的细节信息。

图像处理之快速均值模糊(Box Blur)

 

图像模糊的本质, 从数字信号处理的角度看,图像模糊就要压制高频信号保留低频信号,

压制高频的信号的一个可选择的方法就是卷积滤波。选择一个低频滤波器,对图像上的

每个像素实现低频滤波,这样整体效果就是一张数字图像更加的模糊,显示更少的细节信息。

 传统的卷积模糊计算量巨大,程序效率比较低,基于滑动窗口的Box Blur是一种快速模糊方法,

其结果近似于卷积模糊的结果。我没证明过!

 

一:Box Blur数学原理

根据输入的半径R,计算起始2*R +1个像素的平均值, 作为第一个输出像素的结果,

公式可以表示为

像素 X0 =  其中K代表输入像素集合, i的取值范围为 i∈[-R, R]

然后计算每一行输出像素的值根据Xi = X0 + (K[index + R + 1] – K[index - R])

 

二:Box Blur的特征

Box Blur是一种快速的图像模糊技术, 相比于传统的卷积模糊,Box Blur可以更有效率的

完成对图像模糊, 模糊的程度取决一下三个输入参数,

1.      X方向上半径 H Radius

2.      Y方向上半径 V Radius

3.      迭代次数 Iteration number

在半径相同的情况下, 迭代次数越多,输出的图像就越模糊

在迭代次数相同的情况下, 像素半径越大, 输出的图像就越模糊

上述两者之间的不同是对图像的拉伸效果, 半径越大,对图像的拉伸效果越显著

 

Box模糊利用滑动窗口算法,从而简化了每次计算平均值带来额外开销。

 

从数字图像和信号处理的角度看, Box Blur是一种不折不扣的低通滤波, 但是它并不

是真正的高斯低通滤波, 不是卷积实现, 因而速度更快。

 当水平和垂直半径分别为1 时,是典型的3*3 的矩阵卷积

1, 1, 1

1, 1, 1

1, 1, 1

计算, 相比于传统的卷积计算之后,要进行归一化处理,box计算过程中已经完成像素平均,

无需归一化处理。


三:基于滑动窗口算法的Box模糊效果

 

水平和垂直方向

 

垂直方向:

 

 

水平方向:

 

四:程序关键代码解析

注释已经很详细的写在代码中,最重要的一个步骤是提前建立index,根据index来找到平均值。

    public static void blur( int[] in, int[] out, int width, int height, int radius ) {
        int widthMinus1 = width-1;
        int tableSize = 2*radius+1;
        int divide[] = new int[256*tableSize];

        // the value scope will be 0 to 255, and number of 0 is table size
        // will get means from index not calculate result again since 
        // color value must be  between 0 and 255.
        for ( int i = 0; i < 256*tableSize; i++ )
            divide[i] = i/tableSize; 

        int inIndex = 0;
        
        // 
        for ( int y = 0; y < height; y++ ) {
            int outIndex = y;
            int ta = 0, tr = 0, tg = 0, tb = 0; // ARGB -> prepare for the alpha, red, green, blue color value.

            for ( int i = -radius; i <= radius; i++ ) {
                int rgb = in[inIndex + ImageMath.clamp(i, 0, width-1)]; // read input pixel data here. table size data.
                ta += (rgb >> 24) & 0xff;
                tr += (rgb >> 16) & 0xff;
                tg += (rgb >> 8) & 0xff;
                tb += rgb & 0xff;
            }

            for ( int x = 0; x < width; x++ ) { // get output pixel data.
                out[ outIndex ] = (divide[ta] << 24) | (divide[tr] << 16) | (divide[tg] << 8) | divide[tb]; // calculate the output data.

                int i1 = x+radius+1;
                if ( i1 > widthMinus1 )
                    i1 = widthMinus1;
                int i2 = x-radius;
                if ( i2 < 0 )
                    i2 = 0;
                int rgb1 = in[inIndex+i1];
                int rgb2 = in[inIndex+i2];
                
                ta += ((rgb1 >> 24) & 0xff)-((rgb2 >> 24) & 0xff);
                tr += ((rgb1 & 0xff0000)-(rgb2 & 0xff0000)) >> 16;
                tg += ((rgb1 & 0xff00)-(rgb2 & 0xff00)) >> 8;
                tb += (rgb1 & 0xff)-(rgb2 & 0xff);
                outIndex += height; // per column or per row as cycle...
            }
            inIndex += width; // next (i+ column number * n, n=1....n-1)
        }
    }


目录
相关文章
|
5月前
|
算法 计算机视觉
图像处理之快速均值模糊(Box Blur)
图像处理之快速均值模糊(Box Blur)
31 0
|
5月前
|
资源调度 算法 计算机视觉
【Qt&OpenCV 图像平滑/滤波处理 -- Blur/Gaussian/Median/Bilateral】
【Qt&OpenCV 图像平滑/滤波处理 -- Blur/Gaussian/Median/Bilateral】
61 0
|
5月前
|
算法 Java 计算机视觉
图像处理之颜色梯度变化 (Color Gradient)
图像处理之颜色梯度变化 (Color Gradient)
48 0
|
5月前
|
算法 C语言 计算机视觉
图像处理之图像快速插值放缩算法
图像处理之图像快速插值放缩算法
34 0
|
6月前
|
算法 计算机视觉 异构计算
yolo如何画框、如何变换目标检测框的颜色和粗细、如何运行detect脚本
yolo如何画框、如何变换目标检测框的颜色和粗细、如何运行detect脚本
|
机器学习/深度学习 人工智能 资源调度
深度学习应用篇-计算机视觉-目标检测[4]:综述、边界框bounding box、锚框(Anchor box)、交并比、非极大值抑制NMS、SoftNMS
深度学习应用篇-计算机视觉-目标检测[4]:综述、边界框bounding box、锚框(Anchor box)、交并比、非极大值抑制NMS、SoftNMS
深度学习应用篇-计算机视觉-目标检测[4]:综述、边界框bounding box、锚框(Anchor box)、交并比、非极大值抑制NMS、SoftNMS
|
资源调度 计算机视觉
CV10 图像模糊(均值、高斯、中值、双边滤波)
当我们只想得到感兴趣的物体时,通过图像模糊,可以将那些尺寸和亮度较小的物体过滤掉,较大的物体则易于检测。除了降低噪声,这就是图像平滑(模糊)的另一个重要应用:减少噪点,突出ROI,以便目标提取。
331 0
|
并行计算 iOS开发 计算机视觉
Metal每日分享,均值模糊滤镜效果
Metal每日分享,均值模糊滤镜效果
Metal每日分享,均值模糊滤镜效果
|
人工智能 前端开发
纯css车牌倾斜矫正的方法 css图像透视变换
纯css车牌倾斜矫正的方法 css图像透视变换
236 0
纯css车牌倾斜矫正的方法 css图像透视变换