图像处理之直方图均衡化
基本思想:
直方图图均衡化是图像处理中的常用图像增强手段,直方图均衡化的主要优点是
可以降低图像噪声,提升图像的局部显示。对于常见的RGB图像,直方图均衡化
可以分别在三个颜色通道上处理,基本的直方图均衡化的公式为:

其中nj表示灰度级为Rk的像素的个数,L为图像中灰度总数,对于RGB来说L的
取值范围为[0~255]总灰度级为256个。而R表示输入图像的直方图数据。根据输
出的灰度值Sk计算出输出像素的每个像素值,完成直方图均衡化之后的像素处理
程序效果:

源代码:
package com.gloomyfish.filter.study;
import java.awt.image.BufferedImage;
public class HistogramEFilter extends AbstractBufferedImageOp{
@Override
public BufferedImage filter(BufferedImage src, BufferedImage dest) {
int width = src.getWidth();
int height = src.getHeight();
if ( dest == null )
dest = createCompatibleDestImage( src, null );
int[] inPixels = new int[width*height];
int[] outPixels = new int[width*height];
getRGB( src, 0, 0, width, height, inPixels );
int[][] rgbhis = new int[3][256]; // RGB
int[][] newrgbhis = new int[3][256]; // after HE
for(int i=0; i<3; i++) {
for(int j=0; j<256; j++) {
rgbhis[i][j] = 0;
newrgbhis[i][j] = 0;
}
}
int index = 0;
int totalPixelNumber = height * width;
for(int row=0; row<height; row++) {
int ta = 0, tr = 0, tg = 0, tb = 0;
for(int col=0; col<width; col++) {
index = row * width + col;
ta = (inPixels[index] >> 24) & 0xff;
tr = (inPixels[index] >> 16) & 0xff;
tg = (inPixels[index] >> 8) & 0xff;
tb = inPixels[index] & 0xff;
// generate original source image RGB histogram
rgbhis[0][tr]++;
rgbhis[1][tg]++;
rgbhis[2][tb]++;
}
}
// generate original source image RGB histogram
generateHEData(newrgbhis, rgbhis, totalPixelNumber, 256);
for(int row=0; row<height; row++) {
int ta = 0, tr = 0, tg = 0, tb = 0;
for(int col=0; col<width; col++) {
index = row * width + col;
ta = (inPixels[index] >> 24) & 0xff;
tr = (inPixels[index] >> 16) & 0xff;
tg = (inPixels[index] >> 8) & 0xff;
tb = inPixels[index] & 0xff;
// get output pixel now...
tr = newrgbhis[0][tr];
tg = newrgbhis[1][tg];
tb = newrgbhis[2][tb];
outPixels[index] = (ta << 24) | (tr << 16) | (tg << 8) | tb;
}
}
setRGB( dest, 0, 0, width, height, outPixels );
return dest;
}
/**
*
* @param newrgbhis
* @param rgbhis
* @param totalPixelNumber
* @param grayLevel [0 ~ 255]
*/
private void generateHEData(int[][] newrgbhis, int[][] rgbhis, int totalPixelNumber, int grayLevel) {
for(int i=0; i<grayLevel; i++) {
newrgbhis[0][i] = getNewintensityRate(rgbhis[0], totalPixelNumber, i);
newrgbhis[1][i] = getNewintensityRate(rgbhis[1], totalPixelNumber, i);
newrgbhis[2][i] = getNewintensityRate(rgbhis[2], totalPixelNumber, i);
}
}
private int getNewintensityRate(int[] grayHis, double totalPixelNumber, int index) {
double sum = 0;
for(int i=0; i<=index; i++) {
sum += ((double)grayHis[i])/totalPixelNumber;
}
return (int)(sum * 255.0);
}
}
转载请务必注明