图像处理之线性插值旋转算法
基本数学知识:
1. 三角函数基本知识,sin, cosin
2. 反三角函数基本知识,知道任意一点坐标P(x, y)求取该点的角度a = atag2(y/x)
3. 极坐标与笛卡尔坐标系转换知识
图像旋转矩阵:由此可以计算图像旋转以后的新的高度与宽度。
相关算法:
双线性插值算法,实现图像旋转反锯齿效果,同时是一种高质量的图像图像旋转方法,
缺点是计算量比较大。但是对现在的计算机硬件来说,速度还可以。
关于角度旋转:
1. 90度,180度,270度可以直接旋转坐标取得,像素直接映射取得。
2. 对于任何角度angle可以如下处理n = mod(angle, 90) = 1, 2, 3, 然后
将角度旋转90,180,270然后再旋转角度(angle– n * 90)。
程序实现:
1. 首先根据输入角度参数angle, 背景填充颜色bgcolor初始化
2. 计算出旋转以后的图像width与height
3. 循环每个输出像素,计算机坐标
4. 反旋转输入角度到输入的目标像素浮点数坐标
5. 使用双线性插值完成目标像素填充,如果不在范围之内填充背景色。
6. 得到输出像素数据,返回旋转后图像
原图:
旋转45度的效果,背景填充为灰色:
程序代码(特殊角度旋转自己实现吧,有点懒)
package com.gloomyfish.filter.study; import java.awt.Color; import java.awt.image.BufferedImage; import java.awt.image.ColorModel; public class RotateFilter extends AbstractBufferedImageOp { private double angle; private Color background; private int outw; private int outh; public RotateFilter() { this.angle = (45.0d/180.0d) * Math.PI; background = Color.BLACK; outw = -1; outh = -1; } public void setDegree(double angle) { this.angle = (angle/180.0d) * Math.PI; } public void setBackgroud(Color background) { this.background = background; } public BufferedImage createCompatibleDestImage(BufferedImage src, ColorModel dstCM) { if ( dstCM == null ) dstCM = src.getColorModel(); return new BufferedImage(dstCM, dstCM.createCompatibleWritableRaster(outw, outh), dstCM.isAlphaPremultiplied(), null); } @Override public BufferedImage filter(BufferedImage src, BufferedImage dest) { int width = src.getWidth(); int height = src.getHeight(); int[] inPixels = new int[width*height]; outw = (int)(width*Math.cos(angle)+height*Math.sin(angle)); outh = (int)(height*Math.cos(angle)+width*Math.sin(angle)); System.out.println("after rotate, new width : " + outw); System.out.println("after rotate, new height: " + outh); int[] outPixels = new int[outw*outh]; getRGB( src, 0, 0, width, height, inPixels ); int index = 0; int centerPixel = inPixels[height/2 * width + width/2]; // calculate new center coordinate float centerX = outw / 2.0f + 0.5f; float centerY = outh /2.0f + 0.5f; // calculate the original center coordinate float ocenterX = width / 2.0f + 0.5f; float ocenterY = height /2.0f + 0.5f; float rx =0, ry = 0; //after rotated coordinate float px = 0, py = 0; // original coordinate float prow = 0, pcol = 0; for(int row=0; row<outh; row++) { for(int col=0; col<outw; col++) { rx = col - centerX; ry = centerY - row; float fDistance = (float)Math.sqrt(rx * rx + ry * ry); float fPolarAngle = 0; //; if(rx != 0) { fPolarAngle = (float)Math.atan2((double)ry, (double)rx); } else { if(rx == 0) { if(ry == 0) { outPixels[index] = centerPixel; continue; } else if(ry < 0) { fPolarAngle = 1.5f * (float)Math.PI; } else { fPolarAngle = 0.5f * (float)Math.PI; } } } // "reverse" rotate, so minus instead of plus fPolarAngle -= angle; px = fDistance * (float)Math.cos(fPolarAngle); py = fDistance * (float)Math.sin(fPolarAngle); // get original pixel float point prow = ((float)ocenterY) - py; pcol = ((float)ocenterX) + px; // now start the biline-interpolation algorithm here!!! int[] rgb = bilineInterpolation(inPixels, width, height, prow, pcol); index = row * outw + col; outPixels[index] = (255 << 24) | (rgb[0] << 16) | (rgb[1] << 8) | rgb[2]; } } if ( dest == null ) dest = createCompatibleDestImage( src, null ); setRGB( dest, 0, 0, outw, outh, outPixels ); return dest; } private int[] bilineInterpolation(int[] input, int width, int height, float prow, float pcol) { double row = Math.floor(prow); double col = Math.floor(pcol); if(row < 0 || row >= height) { return new int[]{background.getRed(), background.getGreen(), background.getBlue()}; } if(col < 0 || col >= width) { return new int[]{background.getRed(), background.getGreen(), background.getBlue()}; } int rowNext = (int)row + 1, colNext = (int)col + 1; if((row + 1) >= height) { rowNext = (int)row; } if((col + 1) >= width) { colNext = (int)col; } double t = prow - row; double u = pcol - col; double coffiecent1 = (1.0d-t)*(1.0d-u); double coffiecent2 = (t)*(1.0d-u); double coffiecent3 = t*u; double coffiecent4 = (1.0d-t)*u; int index1 = (int)(row * width + col); int index2 = (int)(row * width + colNext); int index3 = (int)(rowNext * width + col); int index4 = (int)(rowNext * width + colNext); int tr1, tr2, tr3, tr4; int tg1, tg2, tg3, tg4; int tb1, tb2, tb3, tb4; tr1 = (input[index1] >> 16) & 0xff; tg1 = (input[index1] >> 8) & 0xff; tb1 = input[index1] & 0xff; tr2 = (input[index2] >> 16) & 0xff; tg2 = (input[index2] >> 8) & 0xff; tb2 = input[index2] & 0xff; tr3 = (input[index3] >> 16) & 0xff; tg3 = (input[index3] >> 8) & 0xff; tb3 = input[index3] & 0xff; tr4 = (input[index4] >> 16) & 0xff; tg4 = (input[index4] >> 8) & 0xff; tb4 = input[index4] & 0xff; int tr = (int)(tr1 * coffiecent1 + tr2 * coffiecent4 + tr3 * coffiecent2 + tr4 * coffiecent3); int tg = (int)(tg1 * coffiecent1 + tg2 * coffiecent4 + tg3 * coffiecent2 + tg4 * coffiecent3); int tb = (int)(tb1 * coffiecent1 + tb2 * coffiecent4 + tb3 * coffiecent2 + tb4 * coffiecent3); return new int[]{tr, tg, tb}; } }转载请务必注明