图像处理之积分图应用四(基于局部均值的图像二值化算法)

简介: 图像处理之积分图应用四(基于局部均值的图像二值化算法)基本原理 均值法,选择的阈值是局部范围内像素的灰度均值(gray mean),该方法的一个变种是用常量C减去均值Mean,然后根据均值实现如下操作: pixel = (pixel > (mean - c)) ? object : background 其中默认情况下参数C取值为0。

图像处理之积分图应用四(基于局部均值的图像二值化算法)

基本原理
均值法,选择的阈值是局部范围内像素的灰度均值(gray mean),该方法的一个变种是用常量C减去均值Mean,然后根据均值实现如下操作:
pixel = (pixel > (mean - c)) ? object : background
其中默认情况下参数C取值为0。object表示前景像素,background表示背景像素。

实现步骤
1. 彩色图像转灰度图像
2. 获取灰度图像的像素数据,预计算积分图
3. 根据输入的参数窗口半径大小从积分图中获取像素总和,求得平均值
4.循环每个像素,根据局部均值实现中心像素的二值化赋值
5.输入二值图像

运行结果:
这里写图片描述

代码实现:

package com.gloomyfish.ii.demo;

import java.awt.image.BufferedImage;

public class FastMeanBinaryFilter extends AbstractImageOptionFilter {

    private int constant;
    private int radius;
    public FastMeanBinaryFilter() {
        constant = 10;
        radius = 7; // 1,2,3,4,5,6,7,8
    }

    public int getConstant() {
        return constant;
    }

    public void setConstant(int constant) {
        this.constant = constant;
    }

    public int getRadius() {
        return radius;
    }

    public void setRadius(int radius) {
        this.radius = radius;
    }

    @Override
    public BufferedImage process(BufferedImage image) {
        int width = image.getWidth();
        int height = image.getHeight();

        BufferedImage dest = createCompatibleDestImage( image, null );
        // 图像灰度化
        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        byte[] binData = new byte[width*height];
        getRGB( image, 0, 0, width, height, inPixels );
        int index = 0;
        for(int row=0; row<height; row++) {
            int ta = 0, tr = 0, tg = 0, tb = 0;
            for(int col=0; col<width; col++) {
                index = row * width + col;
                ta = (inPixels[index] >> 24) & 0xff;
                tr = (inPixels[index] >> 16) & 0xff;
                tg = (inPixels[index] >> 8) & 0xff;
                tb = inPixels[index] & 0xff;
                int gray= (int)(0.299 *tr + 0.587*tg + 0.114*tb);
                binData[index] = (byte)gray;
            }
        }

        // per-calculate integral image
        IntIntegralImage grayii = new IntIntegralImage();
        grayii.setImage(binData);
        grayii.process(width, height);
        int yr = radius;
        int xr = radius;
        int size = (yr * 2 + 1)*(xr * 2 + 1);
        for (int row = 0; row < height; row++) {
            for (int col = 0; col < width; col++) {
                index = row * width + col;

                // 计算均值
                int sr = grayii.getBlockSum(col, row, (yr * 2 + 1), (xr * 2 + 1));
                int mean = sr / size;
                int pixel = binData[index]&0xff;

                // 二值化
                if(pixel > (mean-constant)) {
                    outPixels[row * width + col] = (0xff << 24) | (0xff << 16) | (0xff << 8) | 0xff;
                } else {
                    outPixels[row * width + col] = (0xff << 24) | (0x00 << 16) | (0x00 << 8) | 0x00;
                }
            }
        }

        // 返回结果
        setRGB(dest, 0, 0, width, height, outPixels);
        return dest;
    }


}

2017年已经开始啦!博客每个月都会有图像处理相关技术文章更新,欢迎大家继续关注!

目录
相关文章
|
6天前
|
运维 监控 算法
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
|
1天前
|
存储 人工智能 算法
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
阿里云向量检索服务Milvus 2.5版本在全文检索、关键词匹配以及混合检索(Hybrid Search)方面实现了显著的增强,在多模态检索、RAG等多场景中检索结果能够兼顾召回率与精确性。本文将详细介绍如何利用 Milvus 2.5 版本实现这些功能,并阐述其在RAG 应用的 Retrieve 阶段的最佳实践。
通过Milvus内置Sparse-BM25算法进行全文检索并将混合检索应用于RAG系统
|
8天前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
25 3
|
9天前
|
算法 数据安全/隐私保护
基于信息论的高动态范围图像评价算法matlab仿真
本项目基于信息论开发了一种高动态范围(HDR)图像评价算法,并通过MATLAB 2022A进行仿真。该算法利用自然图像的概率模型,研究图像熵与成像动态范围的关系,提出了理想成像动态范围的计算公式。核心程序实现了图像裁剪处理、熵计算等功能,展示了图像熵与动态范围之间的关系。测试结果显示,在[μ-3σ, μ+3σ]区间内图像熵趋于稳定,表明系统动态范围足以对景物成像。此外,还探讨了HDR图像亮度和对比度对图像质量的影响,为HDR图像评价提供了理论基础。
|
16天前
|
算法 安全 网络安全
基于 Python 的布隆过滤器算法在内网行为管理中的应用探究
在复杂多变的网络环境中,内网行为管理至关重要。本文介绍布隆过滤器(Bloom Filter),一种高效的空间节省型概率数据结构,用于判断元素是否存在于集合中。通过多个哈希函数映射到位数组,实现快速访问控制。Python代码示例展示了如何构建和使用布隆过滤器,有效提升企业内网安全性和资源管理效率。
48 9
|
14天前
|
传感器 算法 数据安全/隐私保护
基于Affine-Sift算法的图像配准matlab仿真
本项目展示了Affine-SIFT算法的运行效果(无水印),适用于图像配准任务,能够处理旋转、缩放、平移及仿射变换。程序基于MATLAB2022A开发,包含完整代码与操作视频。核心步骤为:先用SIFT提取特征点,再通过仿射变换实现高精度对准。
|
6天前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
|
8天前
|
算法 安全 Java
探讨组合加密算法在IM中的应用
本文深入分析了即时通信(IM)系统中所面临的各种安全问题,综合利用对称加密算法(DES算法)、公开密钥算法(RSA算法)和Hash算法(MD5)的优点,探讨组合加密算法在即时通信中的应用。
14 0
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM

热门文章

最新文章