图像处理之高斯混合模型

简介: 图像处理之高斯混合模型   一:概述高斯混合模型(GMM)在图像分割、对象识别、视频分析等方面均有应用,对于任意给定的数据样本集合,根据其分布概率, 可以计算每个样本数据向量的概率分布,从而根据概率分布对其进行分类,但是这些概率分布是混合在一起的,要从中分离出单个样本的概率分布就实现了样本数据聚类,而概率分布描述我们可以使用高斯函数实现,这个就是高斯混合模型-GMM。

图像处理之高斯混合模型

   一:概述

高斯混合模型(GMM)在图像分割、对象识别、视频分析等方面均有应用,对于任意给定的数据样本集合,根据其分布概率, 可以计算每个样本数据向量的概率分布,从而根据概率分布对其进行分类,但是这些概率分布是混合在一起的,要从中分离出单个样本的概率分布就实现了样本数据聚类,而概率分布描述我们可以使用高斯函数实现,这个就是高斯混合模型-GMM。



这种方法也称为D-EM即基于距离的期望最大化。


   三:算法步骤

    1.初始化变量定义-指定的聚类数目K与数据维度D

    2.初始化均值、协方差、先验概率分布

    3.迭代E-M步骤

         - E步计算期望

         - M步更新均值、协方差、先验概率分布

         -检测是否达到停止条件(最大迭代次数与最小误差满足),达到则退出迭代,否则继续E-M步骤

    4.打印最终分类结果


四:代码实现

package com.gloomyfish.image.gmm;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

/**
 * 
 * @author gloomy fish
 *
 */
public class GMMProcessor {
	public final static double MIN_VAR = 1E-10;
	public static double[] samples = new double[]{10, 9, 4, 23, 13, 16, 5, 90, 100, 80, 55, 67, 8, 93, 47, 86, 3};
	private int dimNum;
	private int mixNum;
	private double[] weights;
	private double[][] m_means;
	private double[][] m_vars;
	private double[] m_minVars;

	/***
	 * 
	 * @param m_dimNum - 每个样本数据的维度, 对于图像每个像素点来说是RGB三个向量
	 * @param m_mixNum - 需要分割为几个部分,即高斯混合模型中高斯模型的个数
	 */
	public GMMProcessor(int m_dimNum, int m_mixNum) {
		dimNum = m_dimNum;
		mixNum = m_mixNum;
		weights = new double[mixNum];
		m_means = new double[mixNum][dimNum];
		m_vars = new double[mixNum][dimNum];
		m_minVars = new double[dimNum];
	}
	
	/***
	 * data - 需要处理的数据
	 * @param data
	 */
	public void process(double[] data) {
		int m_maxIterNum = 100;
		double err = 0.001;
		
		boolean loop = true;
		double iterNum = 0;
		double lastL = 0;
		double currL = 0;
		int unchanged = 0;
		
		initParameters(data);
		
		int size = data.length;
		double[] x = new double[dimNum];
		double[][] next_means = new double[mixNum][dimNum];
		double[] next_weights = new double[mixNum];
		double[][] next_vars = new double[mixNum][dimNum];
		List<DataNode> cList = new ArrayList<DataNode>();

		while(loop) {
			Arrays.fill(next_weights, 0);
			cList.clear();
			for(int i=0; i<mixNum; i++) {
				Arrays.fill(next_means[i], 0);
				Arrays.fill(next_vars[i], 0);
			}
			
			lastL = currL;
			currL = 0;
			for (int k = 0; k < size; k++)
			{
				for(int j=0;j<dimNum;j++)
					x[j]=data[k*dimNum+j];
				double p = getProbability(x); // 总的概率密度分布
				DataNode dn = new DataNode(x);
				dn.index = k;
				cList.add(dn);
				double maxp = 0;
				for (int j = 0; j < mixNum; j++)
				{
					double pj = getProbability(x, j) * weights[j] / p; // 每个分类的概率密度分布百分比
					if(maxp < pj) {
						maxp = pj;
						dn.cindex = j;
					}
	
					next_weights[j] += pj; // 得到后验概率
	
					for (int d = 0; d < dimNum; d++)
					{
						next_means[j][d] += pj * x[d];
						next_vars[j][d] += pj* x[d] * x[d];
					}
				}
	
				currL += (p > 1E-20) ? Math.log10(p) : -20;
			}
			currL /= size;
			
			// Re-estimation: generate new weight, means and variances.
			for (int j = 0; j < mixNum; j++)
			{
				weights[j] = next_weights[j] / size;
	
				if (weights[j] > 0)
				{
					for (int d = 0; d < dimNum; d++)
					{
						m_means[j][d] = next_means[j][d] / next_weights[j];
						m_vars[j][d] = next_vars[j][d] / next_weights[j] - m_means[j][d] * m_means[j][d];
						if (m_vars[j][d] < m_minVars[d])
						{
							m_vars[j][d] = m_minVars[d];
						}
					}
				}
			}
			
			// Terminal conditions
			iterNum++;
			if (Math.abs(currL - lastL) < err * Math.abs(lastL))
			{
				unchanged++;
			}
			if (iterNum >= m_maxIterNum || unchanged >= 3)
			{
				loop = false;
			}
		}
		
		// print result
		System.out.println("=================最终结果=================");
		for(int i=0; i<mixNum; i++) {
			for(int k=0; k<dimNum; k++) {
				System.out.println("[" + i + "]: ");
				System.out.println("means : " + m_means[i][k]);
				System.out.println("var : " + m_vars[i][k]);
				System.out.println();
			}
		}
		
		
		// 获取分类
		for(int i=0; i<size; i++) {
			System.out.println("data[" + i + "]=" + data[i] + " cindex : " + cList.get(i).cindex);
		}
		
	}
	
	/**
	 * 
	 * @param data
	 */
	private void initParameters(double[] data) {
		// 随机方法初始化均值
		int size = data.length;
		for (int i = 0; i < mixNum; i++)
		{
			for (int d = 0; d < dimNum; d++)
			{
				m_means[i][d] = data[(int)(Math.random()*size)];
			}
		}
		
		// 根据均值获取分类
		int[] types = new int[size];
		for (int k = 0; k < size; k++)
		{
			double max = 0;
			for (int i = 0; i < mixNum; i++)
			{
				double v = 0;
				for(int j=0;j<dimNum;j++) {
					v += Math.abs(data[k*dimNum+j] - m_means[i][j]);
				}
				if(v > max) {
					max = v;
					types[k] = i;
				}
			}
		}
		double[] counts = new double[mixNum];
		for(int i=0; i<types.length; i++) {
			counts[types[i]]++;
		}
		
		// 计算先验概率权重
		for (int i = 0; i < mixNum; i++)
		{
			weights[i] = counts[i] / size;
		}
		
		// 计算每个分类的方差
		int label = -1;
		int[] Label = new int[size];
		double[] overMeans = new double[dimNum];
		double[] x = new double[dimNum];
		for (int i = 0; i < size; i++)
		{
			for(int j=0;j<dimNum;j++)
				x[j]=data[i*dimNum+j];
			label=Label[i];

			// Count each Gaussian
			counts[label]++;
			for (int d = 0; d < dimNum; d++)
			{
				m_vars[label][d] += (x[d] - m_means[types[i]][d]) * (x[d] - m_means[types[i]][d]);
			}

			// Count the overall mean and variance.
			for (int d = 0; d < dimNum; d++)
			{
				overMeans[d] += x[d];
				m_minVars[d] += x[d] * x[d];
			}
		}

		// Compute the overall variance (* 0.01) as the minimum variance.
		for (int d = 0; d < dimNum; d++)
		{
			overMeans[d] /= size;
			m_minVars[d] = Math.max(MIN_VAR, 0.01 * (m_minVars[d] / size - overMeans[d] * overMeans[d]));
		}

		// Initialize each Gaussian.
		for (int i = 0; i < mixNum; i++)
		{

			if (weights[i] > 0)
			{
				for (int d = 0; d < dimNum; d++)
				{
					m_vars[i][d] = m_vars[i][d] / counts[i];

					// A minimum variance for each dimension is required.
					if (m_vars[i][d] < m_minVars[d])
					{
						m_vars[i][d] = m_minVars[d];
					}
				}
			}
		}
		
		System.out.println("=================初始化=================");
		for(int i=0; i<mixNum; i++) {
			for(int k=0; k<dimNum; k++) {
				System.out.println("[" + i + "]: ");
				System.out.println("means : " + m_means[i][k]);
				System.out.println("var : " + m_vars[i][k]);
				System.out.println();
			}
		}
		
	}

	/***
	 * 
	 * @param sample - 采样数据点
	 * @return 该点总概率密度分布可能性
	 */
	public double getProbability(double[] sample)
	{
		double p = 0;
		for (int i = 0; i < mixNum; i++)
		{
			p += weights[i] * getProbability(sample, i);
		}
		return p;
	}

	/**
	 * Gaussian Model -> PDF
	 * @param x - 表示采样数据点向量
	 * @param j - 表示对对应的第J个分类的概率密度分布
	 * @return - 返回概率密度分布可能性值
	 */
	public double getProbability(double[] x, int j)
	{
		double p = 1;
		for (int d = 0; d < dimNum; d++)
		{
			p *= 1 / Math.sqrt(2 * 3.14159 * m_vars[j][d]);
			p *= Math.exp(-0.5 * (x[d] - m_means[j][d]) * (x[d] - m_means[j][d]) / m_vars[j][d]);
		}
		return p;
	}
	
	public static void main(String[] args) {
		GMMProcessor filter = new GMMProcessor(1, 2);
		filter.process(samples);
		
	}
}
结构类DataNode

package com.gloomyfish.image.gmm;

public class DataNode {
	public int cindex; // cluster
	public int index;
	public double[] value;
	
	public DataNode(double[] v) {
		this.value = v;
		cindex = -1;
		index = -1;
	}
}

五:结果


这里初始中心均值的方法我是通过随机数来实现,GMM算法运行结果跟初始化有很大关系,常见初始化中心点的方法是通过K-Means来计算出中心点。大家可以尝试修改代码基于K-Means初始化参数,我之所以选择随机参数初始,主要是为了省事!


不炒作概念,只分享干货!

请继续关注本博客!






目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集 算法
图像处理神经网络数据预处理方法
图像预处理步骤对于图像处理神经网络至关重要。这些步骤不仅保证了数据的一致性和质量,还可以通过数据增强等技术提高模型的泛化能力,从而提升模型的整体性能。每一步骤的选择和应用都基于具体任务和数据集的特性,并在模型训练和测试过程中起到关键作用。
56 0
|
5月前
|
算法 Java 计算机视觉
图像处理之积分图算法
图像处理之积分图算法
61 2
|
5月前
|
机器学习/深度学习 算法 BI
图像处理之HOG特征提取
图像处理之HOG特征提取
120 0
|
6月前
|
数据挖掘 计算机视觉 Python
SciPy图像处理技巧:图像增强与特征提取
【4月更文挑战第17天】本文介绍了如何使用SciPy进行图像增强和特征提取。通过调整亮度、对比度和伽马校正实现图像增强,示例代码展示了相关操作。同时,利用Sobel算子进行边缘检测和Laplacian of Gaussian (LoG) 进行角点检测,以提取图像特征。虽然SciPy不是专业的图像处理库,但其数值计算能力在图像分析中仍有一定价值,可与其他图像处理库结合使用。
|
6月前
|
机器学习/深度学习 编解码
LabVIEW使用支持向量机对脑磁共振成像进行图像分类
LabVIEW使用支持向量机对脑磁共振成像进行图像分类
26 0
|
机器学习/深度学习 传感器 算法
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
|
机器学习/深度学习 传感器 算法
【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)
【图像处理】使用各向异性滤波器和分割图像处理从MRI图像检测脑肿瘤(Matlab代码实现)
|
机器学习/深度学习 算法 BI
图像处理HOG特征提取
简要介绍hog特征提取的原理和python代码实现。
121 0
|
算法 计算机视觉
【信号处理】基于遗传算法的噪声图像的边缘检测(Matlab代码实现)
【信号处理】基于遗传算法的噪声图像的边缘检测(Matlab代码实现)
136 0
|
机器学习/深度学习 传感器 算法
基于MFCC和gmm特征实现语音识别附matlab代码
基于MFCC和gmm特征实现语音识别附matlab代码