开灯关灯问题

简介: 来源:http://www.cnblogs.com/haolujun/archive/2012/10/10/2719031.html 作者:haolujun 有编号1~100个灯泡,起初所有的灯都是灭的。

来源:http://www.cnblogs.com/haolujun/archive/2012/10/10/2719031.html

作者:haolujun

有编号1~100个灯泡,起初所有的灯都是灭的。有100个同学来按灯泡开关,如果灯是亮的,那么按过开关之后,灯会灭掉。如果灯是灭的,按过开关之后灯会亮。

现在开始按开关。

第1个同学,把所有的灯泡开关都按一次(按开关灯的编号: 1,2,3,......100)。
第2个同学,隔一个灯按一次(按开关灯的编号: 2,4,6,......,100)。
第3个同学,隔两个灯按一次(按开关灯的编号: 3,6,9,......,99)。
......

问题是,在第100个同学按过之后,有多少盏灯是亮着的?

这个问题有一个数学上的解决方法。可以看出,被按了奇数次的灯泡应该是亮着的,被按了偶数次的灯泡应该是灭的。那么什么样的灯泡被按了奇数次?什么 样的灯泡又被按了偶数次呢?从按的过程可以发现,如果一个灯泡的编号具有偶数个因子,那么该灯泡就被按了偶数次,反之按了奇数次。现在的问题又变成,什么 样的编号具有奇数个因子,什么样的编号具有偶数个因子?这涉及到一个叫做质因数分解的定理,大概的意思是说,任何正数都能被唯一表示成多个质因数幂次乘积 的方式。

例如:

14=2*7
50=2*5^2
...
100=2^2*5^2

也就是N=(p[1]^e[1])*(p[2]^e[2])*......*(p[k]^e[k]),其中p[i]是质数,e[i]是p[i]的幂次。而由这个公式我们又可以导出一个数有多少个因子的计算公式:FactorNumber(N)=(e[1]+1)*(e[2]+1)*......*(e[k]+1)。

那么什么条件下满足FactorNumber(N)是奇数呢?显然必须所有的e[1],e[2],......,e[k]都必须是偶数,这样才能保证e[i]+1是奇数,结果乘积才能是奇数。而由于e[1],e[2],......,e[k]都是偶数,那么N一定是一个完全平方数(因为sqrt(N)=(p[1]^(e[1]/2))*(p[2]^(e[2]/2))*......*(p[k]^(e[k]/2))是整数) 。回到按灯泡的问题上来,1~100中完全平方数有1,4,9,16,25,36,49,64,81,100这10个数,也就是说最后只有编号为这10个数的灯是亮着的。

 

 

 

相类似题目:http://blog.csdn.net/oceaniwater/article/details/40709609

 

 有n盏灯,编号为1~n,第1个人把所有灯打开,第2个人按下所有编号为2的倍数的开关(这些灯将被关掉),第3个人按下所有编号为3的倍数的开关(其中关掉的灯被打开,       开着灯将被关闭),依此类推。一共有k个人,问最后有哪些灯开着?

    输入:n和k,输出开着的灯编号。k≤n≤1000。

 

   样例输入:7  3

 

   样例输出:1 5 6 7

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <string.h>
 4 #define MAXN 1000 + 10
 5 int a[MAXN];
 6 
 7 int main(int argc, char *argv[])
 8 {
 9   int i, j, n, k, first = 1;
10   scanf("%d %d", &n, &k);
11   memset(a, -1, sizeof(a));
12   for(i = 1; i <= k; i++)
13      for(j = 1; j <= n; j++)
14      {
15         if(j%i == 0) a[j] = -a[j];
16      }
17      /* 
18   for(j = 1; j <= n; j++)
19      if(a[j] == 1) printf("%d ", j); //最后应该没空格 
20        
21        */   
22                               
23   for(j = 1; j <= n; j++)
24      if(a[j] == 1) {if(first) first = 0; else printf(" "); printf("%d", j);}
25   printf("\n");     //最后再输出换行符 
26   system("PAUSE");    
27   return 0;
28 }

总结:1. 用一个标志来判断是否为第一次输出,如是,不输出空格,否则先输空格后输数字

        2 开关灯也可以用0 1

 

相关文章
|
11天前
|
存储 关系型数据库 分布式数据库
PostgreSQL 18 发布,快来 PolarDB 尝鲜!
PostgreSQL 18 发布,PolarDB for PostgreSQL 全面兼容。新版本支持异步I/O、UUIDv7、虚拟生成列、逻辑复制增强及OAuth认证,显著提升性能与安全。PolarDB-PG 18 支持存算分离架构,融合海量弹性存储与极致计算性能,搭配丰富插件生态,为企业提供高效、稳定、灵活的云数据库解决方案,助力企业数字化转型如虎添翼!
|
9天前
|
存储 人工智能 搜索推荐
终身学习型智能体
当前人工智能前沿研究的一个重要方向:构建能够自主学习、调用工具、积累经验的小型智能体(Agent)。 我们可以称这种系统为“终身学习型智能体”或“自适应认知代理”。它的设计理念就是: 不靠庞大的内置知识取胜,而是依靠高效的推理能力 + 动态获取知识的能力 + 经验积累机制。
342 130
|
9天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
430 130
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
|
3天前
|
存储 安全 前端开发
如何将加密和解密函数应用到实际项目中?
如何将加密和解密函数应用到实际项目中?
201 138
|
9天前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
386 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
3天前
|
存储 JSON 安全
加密和解密函数的具体实现代码
加密和解密函数的具体实现代码
202 136
|
21天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1356 8
|
8天前
|
监控 JavaScript Java
基于大模型技术的反欺诈知识问答系统
随着互联网与金融科技发展,网络欺诈频发,构建高效反欺诈平台成为迫切需求。本文基于Java、Vue.js、Spring Boot与MySQL技术,设计实现集欺诈识别、宣传教育、用户互动于一体的反欺诈系统,提升公众防范意识,助力企业合规与用户权益保护。