自动驾驶汽车到底涉及了哪些技术?

简介:
本文来自AI新媒体量子位(QbitAI)

Google从2009年开始做自动驾驶,到现在已有8个年头。8个年头的技术积累还无法将自动驾驶技术量产落地,可见自动驾驶技术并不简单。

自动驾驶是一个庞大而且复杂的工程,涉及的技术很多,大部分答主仅从软件方面进行了介绍,而且太过细致。我从硬件软件两方面谈一谈自动驾驶汽车所涉及的技术。

一. 硬件

离开硬件谈自动驾驶都是耍流氓。

先看个图,下图基本包含了自动驾驶研究所需要的各种硬件。

然而…

这么多传感器并不一定会同时出现在一辆车上。某种传感器存在与否,取决于这辆车需要完成什么样的任务。如果只需要完成高速公路的自动驾驶,类似Tesla 的 AutoPilot 功能,那根本不需要使用到激光传感器;如果你需要完成城区路段的自动驾驶,没有激光传感器,仅靠视觉是很困难的。

自动驾驶系统工程师要以任务为导向,进行硬件的选择和成本控制

1.汽车

既然要做自动驾驶,汽车当然是必不可少的东西。

从我司做自动驾驶的经验来看,做开发时,能不选纯汽油车就别选

一方面是整个自动驾驶系统所消耗的电量巨大,混动和纯电动在这方面具有明显优势。另一方面是是发动机的底层控制算法相比于电机复杂太多,与其花大量时间在标定和调试底层上,不如直接选用电动车研究更高层的算法。

国内也有媒体专门就测试车辆的选择做过调研。

调研文章地址:

http://www.sohu.com/a/139046349_120865

2.控制器

在前期算法预研阶段,推荐使用工控机(Industrial PC,IPC)作为最直接的控制器解决方案。因为工控机相比于嵌入式设备更稳定、可靠,社区支持及配套的软件也更丰富。
百度开源的Apollo推荐了一款包含GPU的工控机,型号为Nuvo-5095GC,如下图。

当算法研究得较为成熟时,就可以将嵌入式系统作为控制器,比如Audi和TTTech共同研发的zFAS,目前已经应用在最新款Audi A8上量产车上了。

3.CAN卡

工控机与汽车底盘的交互必须通过专门的语言——CAN。从底盘获取当前车速及方向盘转角等信息,需要解析底盘发到CAN总线上的数据;工控机通过传感器的信息计算得到方向盘转角以及期望车速后,也要通过 CAN卡 将消息转码成底盘可以识别的信号,底盘进而做出响应。

CAN卡可以直接安装在工控机中,然后通过外部接口与CAN总线相连。

Apollo使用的CAN卡,型号为ESD CAN-PCIe/402,如下图。

4.全球定位系统(GPS)+惯性测量单元(IMU)

人类开车,从A点到B点,需要知道A点到B点的地图,以及自己当前所处的位置,这样才能知道行驶到下一个路口是右转还是直行。

无人驾驶系统也一样,依靠GPS+IMU就可以知道自己在哪(经纬度),在朝哪个方向开(航向),当然IMU还能提供诸如横摆角速度、角加速度等更丰富的信息,这些信息有助于自动驾驶汽车的定位和决策控制。

Apollo的GPS型号为NovAtel GPS-703-GGG-HV,IMU型号为NovAtel SPAN-IGM-A1

5.感知传感器

相信大家对车载传感器都耳熟能详了。

感知传感器分为很多种,包括视觉传感器、激光传感器、雷达传感器等。

视觉传感器就是摄像头,摄像头分为单目视觉,双目(立体)视觉。比较知名的视觉传感器提供商有以色列的Mobileye,加拿大的PointGrey,德国的Pike等。

激光传感器分为单线,多线一直到64线。每多一线,成本上涨1万RMB,当然相应的检测效果也更好。比较知名的激光传感器提供商有美国的VelodyneQuanergy,德国的Ibeo等。国内有速腾聚创禾赛科技

雷达传感器是车厂Tier1的强项,因为雷达传感器已经在汽车上得到了广泛使用。知名的供应商当然是博世、德尔福、电装等。

6.硬件部分总结

组装一套可以完成某项功能的自动驾驶系统需要及其丰富的经验,并且要对各传感器的性能边界及控制器计算能力了如指掌。优秀的系统工程师能在满足功能的要求下将成本控制在最低,使其量产、落地的可能性更大。

二. 软件

大部分答主已对软件进行了阐述,我也从我的角度介绍以下软件的开发。

软件部分的内容已在我的回答:无人驾驶,个人如何研究? 中进行了介绍。

《无人驾驶,个人如何研究?》文章链接:

https://www.zhihu.com/question/20210846/answer/215490332

以下内容前半段为搬运。

软件包含四层:感知、融合、决策、控制。

各个层级之间都需要编写代码,去实现信息的转化,更细化的分类如下。

1.采集

传感器跟我们的PC或者嵌入式模块通信时,会有不同的传输方式。

比如我们采集来自摄像机的图像信息,有的是通过千兆网卡实现的通信,也有的是直接通过视频线进行通信的。再比如某些毫米波雷达是通过CAN总线给下游发送信息的,因此我们必须编写解析CAN信息的代码。

不同的传输介质,需要使用不同的协议去解析这些信息,这就是上文提到的“驱动层”。

通俗地讲就是把传感器采集到的信息全部拿到,并且编码成团队可以使用的数据。

2.预处理

传感器的信息拿到后会发现不是所有信息都是有用的。

传感器层将数据以一帧一帧、固定频率发送给下游,但下游是无法拿每一帧的数据去进行决策或者融合的。为什么?

因为传感器的状态不是100%有效的,如果仅根据某一帧的信号去判定前方是否有障碍物(有可能是传感器误检了),对下游决策来说是极不负责任的。因此上游需要对信息做预处理,以保证车辆前方的障碍物在时间维度上是一直存在的,而不是一闪而过。

这里就会使用到智能驾驶领域经常使用到的一个算法——卡尔曼滤波。

3.坐标转换

坐标转换在智能驾驶领域十分重要。

传感器是安装在不同地方的,比如超声波雷达(上图中橘黄色小区域)是布置在车辆周围的;当车辆右方有一个障碍物,距离这个超声波雷达有3米,那么我们就认为这个障碍物距离车有3米吗?

并不一定!因为决策控制层做车辆运动规划时,是在车体坐标系下做的(车体坐标系一般以后轴中心为O点),所以最终所有传感器的信息,都是需要转移到自车坐标系下的。

因此感知层拿到3m的障碍物位置信息后,必须将该障碍物的位置信息转移到自车坐标系下,才能供规划决策使用。

同理,摄像机一般安装在挡风玻璃下面,拿到的数据也是基于摄像机坐标系的,给下游的数据,同样需要转换到自车坐标系下。

什么是自车坐标系?

请拿出你的右手,以大拇指 → 食指 → 中指 的顺序开始念 X、Y、Z。

然后把手握成如下形状:

把三个轴的交点(食指根部)放在自车坐标系后轴中心,Z轴指向车顶,X轴指向车辆前进方向。

各个团队可能定义的坐标系方向不一致,只要开发团队内部统一即可。

4.信息融合

信息融合是指把相同属性的信息进行多合一操作。

比如摄像机检测到了车辆正前方有一个障碍物,毫米波也检测到车辆前方有一个障碍物,激光雷达也检测到前方有一个障碍物,而实际上前方只有一个障碍物,所以我们要做的是把多传感器下这辆车的信息进行一次融合,以此告诉下游,前面有一辆车,而不是三辆车。

5.决策规划

这一层次主要设计的是拿到融合数据后,如何正确做规划。规划包含纵向控制和横向控制。

纵向控制即速度控制,表现为 什么时候加速,什么时候制动。

横向控制即行为控制,表现为 什么时候换道,什么时候超车等

6.软件长什么样子?

自动驾驶系统中的部分软件看起来和下面类似。

软件的名字反映了该软件的实际作用——

app_driver_camera 摄像机驱动

app_driver_hdmap 高精度地图驱动

app_driver_ins 惯导驱动

app_driver_lidar 激光传感器驱动

app_driver_mwr 毫米波传感器驱动

app_fusion_freespace 自由行驶区域融合

app_fusion_lane 车道线融合

app_fusion_obstacle 障碍物融合

app_planning&decision 规划决策

然而实际上攻城狮们会编写一些其他软件用于自己的调试工作,比如记录数据和回放数据的工具。

还有用于传感器信息显示的可视化程序,类似下图的效果。


点击左下角“阅读原文”处,解锁作者的更多文章

还可以直接参与讨论~

本文作者:陈光
原文发布时间:2017-09-05 
相关文章
|
安全 应用服务中间件 网络安全
开源对象存储Minio部署篇
MinIO 是一个基于Apache License v2.0开源协议的对象存储服务。它兼容亚马逊S3云存储服务接口,非常适合于存储大容量非结构化的数据,例如图片、视频、日志文件、备份数据和容器/虚拟机镜像等,而一个对象文件可以是任意大小,从几kb到最大5T不等。(摘自minio中文站点https://docs.min.io/cn/ 里面有很详细的介绍)。minio部署简单易用,分布式方式部署可以水平扩容且数据分散存储在所有节点上,只要在线节点N/2数据就非常安全,这类似raid6,不同的是卷级别和对象级别,使用方式有网页端、linux端工具mc、多语言SDK。
1611 0
开源对象存储Minio部署篇
|
机器学习/深度学习 编解码 算法
MMDetection系列 | 4. MMDetection模型代码训练及测试过程的详细解析
MMDetection系列 | 4. MMDetection模型代码训练及测试过程的详细解析
1241 0
MMDetection系列 | 4. MMDetection模型代码训练及测试过程的详细解析
|
人工智能 边缘计算 JSON
E百科 | 第1期 基于MEC的边缘AI服务
阿里云边缘计算团队付哲解读5G下热门场景:边缘AI。作者:阿里云付哲,计算机科学与技术专业博士后,在流量检测、资源调度领域有深入研究,其论文《Astraea: Deploy AI Services at the Edge in Elegant Ways》曾入选2020年IEEE边缘计算国际会议(IEEE International Conference on Edge Computing)。目前在阿里云边缘计算团队从事边缘云资源调度和创新应用方面的研究。
2780 0
E百科 | 第1期 基于MEC的边缘AI服务
|
消息中间件 负载均衡 中间件
【Alibaba中间件技术系列】「RocketMQ技术专题」让我们一起探索一下DefaultMQPullConsumer的实现原理及源码分析
【Alibaba中间件技术系列】「RocketMQ技术专题」让我们一起探索一下DefaultMQPullConsumer的实现原理及源码分析
349 84
【Alibaba中间件技术系列】「RocketMQ技术专题」让我们一起探索一下DefaultMQPullConsumer的实现原理及源码分析
|
机器学习/深度学习 编解码 弹性计算
云上视频处理:重塑视频行业的未来版图
云上视频处理技术作为视频行业的重要支撑力量,正以其高效、灵活、可扩展的优势引领着视频行业的未来发展。从在线视频平台到短视频平台再到智能安防等各个领域都能看到云上视频处理技术的身影
375 2
|
存储 安全 数据安全/隐私保护
深入探索iOS与Android的隐私保护机制
在数字化时代,智能手机已成为我们生活中不可或缺的一部分,而随之而来的隐私安全问题也日益凸显。本文旨在对比分析iOS和Android两大操作系统在隐私保护方面的策略和技术实现,揭示它们在设计理念、权限管理、数据加密等方面的不同之处,为读者提供一个全面了解两大系统隐私保护机制的视角。
|
机器学习/深度学习 传感器 算法
GA-BP回归预测 | Matlab 遗传算法优化算法优化BP神经网络回归预测
GA-BP回归预测 | Matlab 遗传算法优化算法优化BP神经网络回归预测
|
JavaScript 前端开发 Java
若依框架---选中某值 其他值自动回调填充
若依框架---选中某值 其他值自动回调填充
388 0
|
Ubuntu Linux
Install Typora on Linux
Install Typora on Linux
312 1
|
安全 数据安全/隐私保护 智能硬件