【黑金原创教程】【FPGA那些事儿-驱动篇I 】实验十六:IIC储存模块

简介: IIC储存器是笔者用来练习精密控时的经典例子。《整合篇》之际,IIC储存器的解释,笔者也自认变态。如今笔者回头望去,笔者也不知道自己当初到底发什么神经,既然将IIC的时序都解释一番。由于开发上板也嵌着IIC储存器(24LC04),笔者还得循例地介绍一下。

 

IIC储存器是笔者用来练习精密控时的经典例子。《整合篇》之际,IIC储存器的解释,笔者也自认变态。如今笔者回头望去,笔者也不知道自己当初到底发什么神经,既然将IIC的时序都解释一番。由于开发上板也嵌着IIC储存器(24LC04),笔者还得循例地介绍一下。

IIC储存器是应用IIC总线的储存器,时序本身并不是很复杂不过缺有一大堆时序参数,而且官方提供的时序也不利于描述,所以许多时序都必须自行绘制,真是麻烦死人。麻烦归麻烦,笔者终究还要吃饭,为了肚子,再麻烦的事情也要硬着头皮捱过去 ... 这也是白骆驼的恶作剧!

clip_image002

图16.1 IIC总线与IIC设备。

图16.1是IIC总线与IIC设备常见的示意图。理想上,一条IIC总线允许千万IIC设备占据在上 ... 物理下,一条IIC总监究竟允许多少IIC设备占据其中必须根据设备地址的长度。默认下,设备地址为八位宽,因此设备地址也称为设备字节。设备地址的高四位,即[7..4]记录硬件ID,接续三位即 [3..1] 则记录硬件地址,最后一位则是设备的访问方向。结果如表16.1所示:

表16.1 设备地址的位分配。

[7]

[6]

[5]

[4]

[3]

[2]

[1]

[0]

硬件ID

硬件地址

访问方向

所谓硬件ID就是IIC设备的辨识ID,硬件ID会随着厂商还有设备的种类而有所改变。开发板上的IIC设备是某厂商的IIC储存器,即24LC04,硬件ID为 4’b1010。至于硬件地址就是IIC设备在总线上辨识地址,默认下为3位,即同类的IIC设备在同一条IIC总线上仅允许占据8个而已。然而,开发板上的 24LC04 为3’b000。最后的访问方向位则是主机用来通知从机,此刻的访问目的是读还是写。

总结来说,设备地址除了访问方向以外,前七位一般都是固定的,例如开发板的IIC储存器24LC04,设备地址就是 8’b1010_000_×。

clip_image004

图16.2 24LC04的写操作(主机视角)。

IIC总线的时序,感觉上一组完成的操作宛如是一堆拼图。如图16.2所示,那是24LC04的写操作,时序先填上为起始位,再来是设备地址,余下是应答位,随之是数据地址,然后又是应答位,接着是写如数据,再一次应答位,最后挂上结束位以示一次性的写操作已经完成。那么,写操作的经过如下所示:

(一)主机发送起始位;

(二)主机发送设备地址(写);

(三)等待从机应答;

(四)主机发送数据地址;

(五)等待从机应答;

(六)主机发送数据;

(七)等待从机应答;

(八)主机发送结束位。

读者稍微注意一下设备地址的最低位,笔者稍微用蓝色将其高亮。由于此刻是写操作,所以设备地址的访问方向是“写”,所以访问方向位设置为0。

clip_image006

图16.3 24LC04的读操作(主机视角)。

图16.3是24LC04的读时序,同样它也是由一堆“拼图”组合而成。相较写操作,读操作不仅多了许多“拼图”,而且途中也改变访问方向。那么,读操作的经过如下所示:

(一)主机发送起始位;

(二)主机发送设备地址(写);

(三)等待从机应答;

(四)主机发送数据地址;

(五)主机发送起始位;

(六)主机发送设备地址(读);

(七)等待从机应答;

(八)主机读取数据;

(九)从机没有应答(主机无视应答);

(十)主机发送结束位。

未进入正题之前,请允许笔者加入一些小插曲。IIC总线是一种低速的总线,不过IIC总线有 100Khz 还有 400Khz 两种速率提供我们选择,要么100Khz,要么400Khz,要么两者兼施,不管哪一种《整合篇》都曾实验过。在此,实验十六会以400Khz的速率作为标准。

笔者曾在前面说过,IIC总线之所以麻烦,因为IIC总线有大小不同的时序参数(时间参数)。一般而言,时间参数都都被顺序语言一笑而过,那是因为顺序语言无法实现精密控时。虽然描述语言也可以一笑而过,但是语言的本质却不允我们这么作,如果我们选择无视时序参数 ... 那么,打从一开始我们还是不学为好。

此外,描述IIC的总线时序有各种各样的方法,但是笔者会选择表达能力更高,控制能力更细的描述手段。我们知道IIC的总线时序是由一块又一块的拼图拼凑而成,当我们在建模的时候,我们会针对各个拼图作出局部性的描述。期间,我们也必须考虑各种时序参数,如表16.2所示:

表16.2 各种时序参数(50Mhz量化)。

相关参数

标示

最小时间

最小时钟

最大时间

最大时钟

Clock Frequency

FCLK

---

---

400Khz

125

Clock High Time

THIGH

600ns

30

---

---

Clock Low Time

TLOW

1300ns

65

---

---

Rise Time

TR

---

---

300ns

15

Fall Time

TF

---

---

300ns

15

Start Hold Time

THD_STA

600ns

30

---

---

Start Setup Time

TSU_STA

600ns

30

---

---

Data Input Hold Time

THD_DAT

0ns

0

---

---

Data Input Setup Time

TSU_DAT

100ns

5

---

---

Stop Setup Time

TSU_STO

600ns

30

---

---

Output Valid From Clock

TAA

---

---

900ns

45

Bus Free Time

TBUF

1300ns

65

---

---

相比许多同学遇见表16.2便会立即憋着蛋蛋,因为它会吓坏一群小朋友。话虽如此,表16.2只有外表可怕的纸老虎而已,任何有时序基础的同学,随便擦擦两下就搞定。笔者虽然也想一笑打过,不过笔者还要循例介绍一下:

l Clock Frequency,既是频率也是速率,在此是400Khz。

l Clock High Time,既SCL信号保持高电平所需的最小时间。

l Clock Low Time,既SCL信号保持低电平所需的最小时间。

l Rise Time,既信号由底变高所需最大的时间。

l Fall Time,既信号又高变低所需最小的时间。

l Start Hold Time,既起始位所需最小的保持时间。

l Start Setup Time,既起始位所需最小的建立时间。

l Data Input Hold Time,既数据位所需最小的保持时间。

l Data Input Setup Time,既数据位所需最小的建立时间。

l Stop Setup Time,既结束位所需的最小保持时间。

l Ouput Valid From Clock,既数据位经时钟沿触发以后的有效时间。

l Bus Free Time,既释放总线的最小时间。

IIC总线是一种串行传输协议,既有时钟信号SCL,还有数据信号SDA。Clock Frequency 表示SCL信号的频率,Clock High Time 表示 SCL信号保持高电平所需的最小时间,Clock Low Time则表示 SCL信号保持低电平所需的最小的时间。

至于 Rise Time 与 Fall Time 表示,SCL信号还有 SDA信号由高变低或者由低变高时所需的最小时间,即上山与下山时间。Hold Time 与 Setup Time 是用来评估数据是否成功打入寄存器的时序参数,算是典型中的典型。Setup Time 表示建立时间,即数据写入寄存器之前所需的稳定时间;反之,Hold Time则是保持时间,即数据打入寄存器之后所需的稳定时间。只要两者得到满足,那么数据的寄存活动就得到确保。

Start是IIC总线的起始位,Stop是IIC总线的结束位,Data 是IIC总线的数据位,为了确保三者成功写入从机,Setup Time 与 Hold Time 必须得到满足。Ouput Valid From Clock是关系数据位的时序参数,还有 Bus Free Time 是关系结束位的时序参数,在此先丢胃口一下。此外,为了简化时序,笔者将各种参数的实际时间转换为50Mhz量化以后的结果。对此,Verilog 可以这样表示,结果如代码16.1所示:

1. parameter FCLK = 10'd125, FHALF = 10'd62, FQUARTER = 10'd31;

2. parameter THIGH = 10'd30, TLOW = 10'd65, TR = 10'd15, TF = 10'd15;

3. parameter THD_STA = 10'd30, TSU_STA = 10'd30, TSU_STO = 10'd30;

代码16.1

如代码16.1所示,FCLK表示400Khz的周期,FHALF表示1/2周期,FQUARTER表示1/4周期。至于为什么代码16.1不见,Data Input Hold Time 与 Bus Free Time 的时序参数,请读者暂时忍耐,往后会解释。

(话题继续之前,请读者确保自己对“整合时序”有一定的理解,不然的话 ... 接下来的内容,读者一定会看到泪流满面。)

clip_image008

图 16.4 起始位。

首先让我们先瞧瞧起始位这枚拼图。如图16.4所示,左图是起始位的理想时序,右图是起始位的物理时序。IIC总线的起始位也就类似串口或者PS/2等传输协议的起始位,然而不同的是,IIC总线的起始位是 SCL 拉高 TR + TSU_STA + THD_STA + TF 之久,换之 SDA 则是拉高 TR + THIGH 然后拉低 TF + TLOW。起始位总和所用掉的时间,恰恰好有一个速率的周期。对此,Verilog则可以这样描述,结果如代码16.2所示:

1. begin

2. isQ = 1;

3. rSCL <= 1'b1;

4. if( C1 == 0 ) rSDA <= 1'b1;

5. else if( C1 == (TR + THIGH) ) rSDA <= 1'b0;

6. if( C1 == (FCLK) -1) begin C1 <= 10'd0; i <= i + 1'b1; end

7. else C1 <= C1 + 1'b1;

8. end

代码16.2

如代码16.2所示,第2行的isQ = 1 表示设置 SDA 为输出状态(即时结果),第3行则表示 SCL一直持续拉高状态,第4~5行表示C1为0的时候SDA拉高,直到C1为TR+THIGH才拉低SDA。第6~7行表示一个步骤所逗留的时间。

clip_image010

图16.5 结束位。

图16.5是结束位的时序图,IIC设备的操作好坏一般都取决结束位。保险起见,SCL与SDA都事先拉低1/4周期,紧接着 SCL会拉高 TR+TSU_STO(或者1/2周期),最后又保持高电平1/2周期。反之,SDA会拉低1/2周期,随之拉高 TR+THIGH(或者1/2周期)。对此,Verilog可以这样表示,结果如代码16.3所示:

1. begin

2. isQ = 1'b1;

3. if( C1 == 0 ) rSCL <= 1'b0;

4. else if( C1 == FQUARTER ) rSCL <= 1'b1;

5. if( C1 == 0 ) rSDA <= 1'b0;

6. else if( C1 == (FQUARTER + TR + TSU_STO) ) rSDA <= 1'b1;

7. if( C1 == ( FQUARTER + FCLK ) -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

8. else C1 <= C1 + 1'b1;

9. end

代码16.3

如代码16.3所示,第2行表示 SDA为输出状态(即时),第3~4行表示C1为0拉高SCL,C1为1/4周期就拉高。第5~6行表示,C1为0拉低SDA,C1为 1/4周期 + TR + TSU_STO就拉高 SDA。第7~8行表示该步骤所逗留的时间。

clip_image012

图16.6 释放总线。

此外,结束位还有 Bus Free Tme 这个时序参数,IIC总线在闲置的状态下 SCL 与 SDA 等信号都持续高电平。主机发送结束位以示结束操作,然而主机持续拉高SCL信号与SDA信号 TBUF以示总线释放。TBUF的有效时间从SCL信号与SDA信号拉高那一刻开始算起

根据表16.2所示,TBUF是65个时钟,结果如图16.6所示,SDA信号拉高之后,SCL与SDA信号只要持续保持 1/2周期(即62个时),基本上就能满足TBUF。如果笔者是一位紧密控时狂人,可能无法接受这样的结果,因为满足 TBUF 少了3个时钟,为此代码16.3需要更动一下:

7. if( C1 == ( FQUARTER + FCLK + 3) -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

8. else C1 <= C1 + 1'b1;

9. end

代码16.4

如代码16.4所示,笔者为第7行写下 +3 表示该步骤多逗留3个时钟,以致满足TBUF。

clip_image014

图16.7 数据位。

不管对象是设备地址,数据地址,写入数据,读出数据,还是应答位,大伙都视为数据位。IIC总线类似其他传输协议,它有时钟信号也有上升沿与下降沿。如图16.7所示,SCL信号的下降沿导致设备设置(更新)数据,上升沿则是锁存(读取)数据。期间,TF+TLOW 表示时钟信号的前半周期,TR+THIGH则表示后半周期。此外,为了确保数据成功打入寄存器,数据被上升沿锁存哪一刻起,TSU_DAT 还有 THD_DAT 必须得到满足。

clip_image016

图16.8 数据位更新有效。

除此之外,为了确保数据有效被更新,我们也必须确保TAA得到满足,结果如图16.8所示。理解完毕以后,我们就可以开始学习,写一字节数据与读一字节数据,还有应答位。

clip_image018

图16.9 写一字节。

IIC总线一般都是一个字节一个字节读写数据,如图16.9所示,那是写一字节的理想时序图,一字节数据是从最高位开始写起。对此,Verilog可以这样描述,结果如代码16.5所示:

1. 0,1,2,3,4,5,6,7:

2. begin

3. isQ = 1'b1;

4. rSDA <= D1[7-i];

5. if( C1 == 0 ) rSCL <= 1'b0;

6. else if( C1 == (TF + TLOW) ) rSCL <= 1'b1; 

7. if( C1 == FCLK -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

8. else C1 <= C1 + 1'b1;

9. end

代码16.5

如代码16.5所示,第1行有8个步骤,表示写一个字节。第3行isQ为1表示SDA为输出状态。第4行表示从最高位开始更新SDA的数据位。第5~6行表示,C1为0拉低SCL,C1为TF+TLOW则拉高SCL。第7~8行表示该步骤逗留一个周期的时间。

clip_image020

图16.10 应答位。

应答位是从机给予主机的回答,0为是1为否。然而,从旁观看,读取应答位也是读取一位数据位。当主机完成写入一个字节或者读取一个字节数据的时候,从机都会产生应答位。主机拉低SCL那刻,从机便会发送应答位,然后主机会借由上升沿读取应答位。如图16.10所示,上升沿会产生在 TF + TLOW 之后,也是1/2周期。对此,Verilog可以这样表示,结果如代码16.6所示:

 

代码16.6

如代码16.6所示,第2行表示SDA为输入状态。第4~5行表示,C1为0拉低SCL,C1为1/2周期则拉高SCL。第3行表示,C1为1/2周期的时候读取应答位。第6~7行表示该步骤逗留1个周期的时间。

clip_image022

图16.11 读一字节。

所谓读一字节数据就是重复读取8次应答位。如图16.11所示,SCL的下降沿导致从机更新数据,然后主机在SCL的上升沿读取数据。此外,从机也会由高至低更新数据位。至于Verilog 则可以这样表示,结果如代码16.7所示:

1. 0,1,2,3,4,5,6,72. begin

3. isQ = 1'b0;

4. if( C1 == FHALF ) D1[7-i] <= SDA;

5. if( C1 == 0 ) rSCL <= 1'b0;

6. else if( C1 == FHALF ) rSCL <= 1'b1; 

7. if( C1 == FCLK -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

8. else C1 <= C1 + 1'b1;

9. end

代码16.7

如代码16.7所示,第1行表示读取一字节。第3行表示SDA为输入状态,第5~6行表示,C1为0拉低SCL,C1为1/2周期则拉高SCL。第4行表示,C1为1/2周期的时候读取数据,而且数据位由高至低存入D1。第7~8行表示该步骤逗留一个周期的时间。

clip_image024

图16.12 第二次起始位。

我们知道主机向从机读取数据的时候,它必须改变设备地址的方向,因此读操作又第二次起始位。如图16.12所示,感觉上第二次起始位也是第一次起始位,不过为了促使改变方向成功,第二次起始位相较第一次起始位的前后都拉低1/4周期。对此,Verilog 可以这样表示,结果如代码16.8所示:

1. begin

2. isQ = 1'b1;

3. if( C1 == 0 ) rSCL <= 1'b0;

4. else if( C1 == FQUARTER ) rSCL <= 1'b1;

5. else if( C1 == (FQUARTER + TR + TSU_STA + THD_STA + TF) ) rSCL <= 1'b0;

6.

7. if( C1 == 0 ) rSDA <= 1'b0; 

8. else if( C1 == FQUARTER ) rSDA <= 1'b1;

9. else if( C1 == ( FQUARTER + TR + THIGH) ) rSDA <= 1'b0;

10.

11. if( C1 == (FQUARTER + FCLK + FQUARTER) -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

12. else C1 <= C1 + 1'b1;

13. end

代码16.8

如代码16.8所示,第2行表示SDA为输出状态。第3~5行表示,C1为0拉低SCL,C1为1/4周期拉高 SCL,C1为 1/4周期 + TR + TSU_STA + THD_STA + TF 便拉低SCL。第7~9行表示,C1为0拉低SDA,C1为1/4周期拉高SDA,C1为1/4周期 + TR + THIGH 便拉低SDA。第11~12行表示该步骤停留一个周期的时间。

理解完毕以后,我们便可以开始建模了。

clip_image026

图16.13 实验十六的建模图。

图16.13是实验十六的建模图,组合模块iic_demo 内容包含 IIC储存模块,核心操作还有SMG基础模块。首先核心操作会将数据纯如IIC储存模块,然后又从中读取,完后再将读出的数据驱动SMG基础模块。

iic_savemod.v

clip_image028

图16.14 IIC储存模块的建模图。

图16.14是IIC储存模块的建模图,左边是顶层信号,右边则是沟通用的问答信号,写入地址iAddr,写入数据 iData,还有读出数据oData。Call/Done有两位,即表示该模块有读功能还有些功能。具体内容,我们还是来看代码吧:

1. module iic_savemod

2. (

3. input CLOCK, RESET,

4. output SCL,

5. inout SDA,

6. input [1:0]iCall,

7. output oDone,

8. input [7:0]iAddr,

9. input [7:0]iData,

10. output [7:0]oData

11. );

以上内容为相关的出入端声明。

12. parameter FCLK = 10'd125, FHALF = 10'd62, FQUARTER = 10'd31; //(1/400E+3)/(1/50E+6)

13. parameter THIGH = 10'd30, TLOW = 10'd65, TR = 10'd15, TF = 10'd15;

14. parameter THD_STA = 10'd30, TSU_STA = 10'd30, TSU_STO = 10'd30;

15. parameter FF_Write1 = 5'd7;

16. parameter FF_Write2 = 5'd9, RDFUNC = 5'd19;

17.

以上内容为相关的速率还有时序参数声明。第15~16行则是相关的伪函数声明。

18. reg [4:0]i;

19. reg [4:0]Go;

20. reg [9:0]C1;

21. reg [7:0]D1;

22. reg rSCL,rSDA;

23. reg isAck, isDone, isQ;

24.

25. always @ ( posedge CLOCK or negedge RESET )

26. if( !RESET )

27. begin

28. { i,Go } <= { 5'd0,5'd0 };

29. C1 <= 10'd0;

30. D1 <= 8'd0;

31. { rSCL,rSDA,isAck,isDone,isQ } <= 5'b11101;

32. end

以上内容为相关的寄存器声明以及复位操作。

33. else if( iCall[1] )

34. case( i )

35.

36. 0: // Call

37. begin

38. isQ = 1;

39. rSCL <= 1'b1;

40.

41. if( C1 == 0 ) rSDA <= 1'b1; 

42. else if( C1 == (TR + THIGH) ) rSDA <= 1'b0;

43.

44. if( C1 == (FCLK) -1) begin C1 <= 10'd0; i <= i + 1'b1; end

45. else C1 <= C1 + 1'b1;

46. end

47.

以上内容为部分核心操作。第33行的 iCall[1] 为使能写操作。步骤0用来产生起始位。

48. 1: // Write Device Addr

49. begin D1 <= {4'b1010, 3'b000, 1'b0}; i <= 5'd7; Go <= i + 1'b1; end

50.

51. 2: // Wirte Word Addr

52. begin D1 <= iAddr; i <= FF_Write1; Go <= i + 1'b1; end

53.

54. 3: // Write Data

55. begin D1 <= iData; i <= FF_Write1; Go <= i + 1'b1; end

56.

57. /*************************/

58.

以上内容为部分核心操作。步骤1用来写入设备地址,并且调用伪函数。步骤2用来写入数据地址,并且调用伪函数。步骤3用来写入数据,并且调用伪函数。

59. 4: // Stop

60. begin

61. isQ = 1'b1;

62.

63. if( C1 == 0 ) rSCL <= 1'b0;

64. else if( C1 == FQUARTER ) rSCL <= 1'b1; 

65.

66. if( C1 == 0 ) rSDA <= 1'b0;

67. else if( C1 == (FQUARTER + TR + TSU_STO ) ) rSDA <= 1'b1;

68.

69. if( C1 == (FQUARTER + FCLK) -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

70. else C1 <= C1 + 1'b1; 

71. end

72.

以上内容为部分核心操作。步骤4用来产生结束位。

73. 5:

74. begin isDone <= 1'b1; i <= i + 1'b1; end

75.

76. 6: 

77. begin isDone <= 1'b0; i <= 5'd0; end

78.

以上内容为部分核心操作。步骤5~6用来产生完成信号。

79. /*******************************/ //function

80.

81. 7,8,9,10,11,12,13,14:

82. begin

83. isQ = 1'b1;

84. rSDA <= D1[14-i];

85.

86. if( C1 == 0 ) rSCL <= 1'b0;

87. else if( C1 == (TF + TLOW) ) rSCL <= 1'b1; 

88.

89. if( C1 == FCLK -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

90. else C1 <= C1 + 1'b1;

91. end

92.

以上内容为部分核心操作。步骤7~14是写一个字节的伪函数。

93. 15: // waiting for acknowledge

94. begin

95. isQ = 1'b0;

96. if( C1 == FHALF ) isAck <= SDA;

97.

98. if( C1 == 0 ) rSCL <= 1'b0;

99. else if( C1 == FHALF ) rSCL <= 1'b1;

100.

101. if( C1 == FCLK -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

102. else C1 <= C1 + 1'b1; 

103. end

104.

105. 16:

106. if( isAck != 0 ) i <= 5'd0;

107. else i <= Go; 

108.

109. /*******************************/ // end function

110.

111. endcase

112.

以上内容为部分核心操作。步骤15则用来读取应答位,步骤16则用来判断应答位,应答成功返回步骤,失败则重新来过。

113. else if( iCall[0] ) 

114. case( i )

115.

116. 0: // Start

117. begin

118. isQ = 1; 

119. rSCL <= 1'b1;

120.

121. if( C1 == 0 ) rSDA <= 1'b1; 

122. else if( C1 == (TR + THIGH) ) rSDA <= 1'b0;

123.

124. if( C1 == FCLK -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

125. else C1 <= C1 + 1'b1;

126. end

127.

以上内容为部分核心操作。第113行表示 iCall[0] 使能读操作。步骤0用来产生起始位。

128. 1: // Write Device Addr

129. begin D1 <= {4'b1010, 3'b000, 1'b0}; i <= 5'd9; Go <= i + 1'b1; end

130.

131. 2: // Wirte Word Addr

132. begin D1 <= iAddr; i <= FF_Write2; Go <= i + 1'b1; end

133.

134. 3: // Start again

135. begin

136. isQ = 1'b1;

137.

138. if( C1 == 0 ) rSCL <= 1'b0;

139. else if( C1 == FQUARTER ) rSCL <= 1'b1;

140. else if( C1 == (FQUARTER + TR + TSU_STA + THD_STA + TF) ) rSCL <= 1'b0;

141.

142. if( C1 == 0 ) rSDA <= 1'b0; 

143. else if( C1 == FQUARTER ) rSDA <= 1'b1;

144. else if( C1 == ( FQUARTER + TR + THIGH) ) rSDA <= 1'b0;

145.

146. if( C1 == (FQUARTER + FCLK + FQUARTER) -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

147. else C1 <= C1 + 1'b1;

148. end

149.

以上内容为部分核心操作。步骤1用来写入设备地址,并且调用伪函数。步骤2用来写入数据地址,并且调用伪函数。步骤3用来产生第二次起始位。

150. 4: // Write Device Addr ( Read )

151. begin D1 <= {4'b1010, 3'b000, 1'b1}; i <= 5'd9; Go <= i + 1'b1; end

152.

153. 5: // Read Data

154. begin D1 <= 8'd0; i <= RDFUNC; Go <= i + 1'b1; end

155.

156. 6: // Stop

157. begin

158. isQ = 1'b1;

159.

160. if( C1 == 0 ) rSCL <= 1'b0;

161. else if( C1 == FQUARTER ) rSCL <= 1'b1; 

162.

163. if( C1 == 0 ) rSDA <= 1'b0;

164. else if( C1 == (FQUARTER + TR + TSU_STO) ) rSDA <= 1'b1;

165.

166. if( C1 == (FCLK + FQUARTER) -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

167. else C1 <= C1 + 1'b1; 

168. end

169.

170. 7:

171. begin isDone <= 1'b1; i <= i + 1'b1; end

172.

173. 8: 

174. begin isDone <= 1'b0; i <= 5'd0; end

175.

以上内容为部分核心操作。步骤4用来写入设备地址(读),并且调用伪函数。步骤5用来读取一个字节,并且调用伪函数。步骤6用来产生结束位。步骤7~8则用来产生完成信号。

176. /*******************************/ //function

177.

178. 9,10,11,12,13,14,15,16:

179. begin

180. isQ = 1'b1;

181.

182. rSDA <= D1[16-i];

183.

184. if( C1 == 0 ) rSCL <= 1'b0;

185. else if( C1 == (TF + TLOW) ) rSCL <= 1'b1; 

186.

187. if( C1 == FCLK -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

188. else C1 <= C1 + 1'b1;

189. end

190.

以上内容为部分核心操作。步骤9~16是用来写一字节的伪函数。

191. 17: // waiting for acknowledge

192. begin

193. isQ = 1'b0;

194.

195. if( C1 == FHALF ) isAck <= SDA;

196.

197. if( C1 == 0 ) rSCL <= 1'b0;

198. else if( C1 == FHALF ) rSCL <= 1'b1;

199.

200. if( C1 == FCLK -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

201. else C1 <= C1 + 1'b1; 

202. end

203.

204. 18:

205. if( isAck != 0 ) i <= 5'd0;

206. else i <= Go;

207.

以上内容为部分核心操作。步骤17用来读取应答位,步骤18则用来判断应答位。

208. /*****************************/

209.

210. 19,20,21,22,23,24,25,26: // Read

211. begin

212. isQ = 1'b0;

213. if( C1 == FHALF ) D1[26-i] <= SDA;

214.

215. if( C1 == 0 ) rSCL <= 1'b0;

216. else if( C1 == FHALF ) rSCL <= 1'b1; 

217.

218. if( C1 == FCLK -1 ) begin C1 <= 10'd0; i <= i + 1'b1; end

219. else C1 <= C1 + 1'b1;

220. end

221.

以上内容为部分核心操作。步骤19~26是读取一字节的伪函数。

222. 27: // no acknowledge

223. begin

224. isQ = 1'b1;

225. //if( C1 == 100 ) isAck <= SDA;

226.

227. if( C1 == 0 ) rSCL <= 1'b0;

228. else if( C1 == FHALF ) rSCL <= 1'b1;

229.

230. if( C1 == FCLK -1 ) begin C1 <= 10'd0; i <= Go; end

231. else C1 <= C1 + 1'b1; 

232. end

233.

234. /*************************************/ // end fucntion

235.

236. endcase

237.

以上内容为部分核心操作。步骤27用来无视应答位。

238. /***************************************/

239.

240. assign SCL = rSCL;

241. assign SDA = isQ ? rSDA : 1'bz;

242. assign oDone = isDone;

243. assign oData = D1;

244.

245. /***************************************/

246.

247. endmodule

以上内容为相关的驱动声明。

iic_demo.v
该组合模块的连线部署请参考图16.13,具体内容让我们来看代码吧。

1. module iic_demo

2. (

3. input CLOCK, RESET,

4. output SCL,

5. inout SDA,

6. output [7:0]DIG,

7. output [5:0]SEL

8. );

以上内容为相关的出入端声明。

9. wire [7:0]DataU1;

10. wire DoneU1;

11.

12. iic_savemod U1

13. (

14. .CLOCK( CLOCK ),

15. .RESET( RESET ),

16. .SCL( SCL ), // > top

17. .SDA( SDA ), // <> top

18. .iCall( isCall ), // < core

19. .oDone( DoneU1 ), // > core

20. .iAddr( D1 ), // < core

21. .iData( D2 ), // < core

22. .oData( DataU1 ) // > core

23. );

24.

以上内容为IIC储存模块的实例化 。

25. smg_basemod U2

26. (

27. .CLOCK( CLOCK ),

28. .RESET( RESET ),

29. .DIG( DIG ), // > top

30. .SEL( SEL ), // > top

31. .iData( D3 ) // < core

32. );

33.

以上内容为数码管基础模块的实例化。

34. /***************************/

35.

36. reg [3:0]i;

37. reg [7:0]D1,D2;

38. reg [23:0]D3;

39. reg [1:0]isCall;

40.

41. always @ ( posedge CLOCK or negedge RESET ) // core

42. if( !RESET )

43. begin

44. i <= 4'd0;

45. { D1,D2 } <= { 8'd0,8'd0 };

46. D3 <= 24'd0;

47. isCall <= 2'b00;

48. end

49. else

以上内容为相关的寄存器声明以及复位操作。

50. case( i )

51.

52. 0:

53. if( DoneU1 ) begin isCall <= 2'b00; i <= i + 1'b1; end

54. else begin isCall <= 2'b10; D1 <= 8'd0; D2 <= 8'hAB; end

55.

56. 1:

57. if( DoneU1 ) begin isCall <= 2'b00; i <= i + 1'b1; end

58. else begin isCall <= 2'b10; D1 <= 8'd1; D2 <= 8'hCD; end

59.

60. 2:

61. if( DoneU1 ) begin isCall <= 2'b00; i <= i + 1'b1; end

62. else begin isCall <= 2'b10; D1 <= 8'd2; D2 <= 8'hEF; end

63.

64. 3:

65. if( DoneU1 ) begin D3[23:16] <= DataU1; isCall <= 2'b00; i <= i + 1'b1; end

66. else begin isCall <= 2'b01; D1 <= 8'd0; end

67.

68. 4:

69. if( DoneU1 ) begin D3[15:8] <= DataU1; isCall <= 2'b00; i <= i + 1'b1; end

70. else begin isCall <= 2'b01; D1 <= 8'd1; end

71.

72. 5:

73. if( DoneU1 ) begin D3[7:0] <= DataU1; isCall <= 2'b00; i <= i + 1'b1; end

74. else begin isCall <= 2'b01; D1 <= 8'd2; end

75.

76. 6:

77. i <= i;

78.

79. endcase

80.

81. endmodule

以上内容为核心操作。步骤0~2将数据8’hAB 写入地址0,8’hCD写入地址1,8’hEF写入地址2。步骤3~5则是从地址0读出数据 8’hAB并且暂存至 D3[23:16], 从地址1读出数据 8’hCD 并且暂存至 D3[15:8],从地址2读出数据 8’hEF 并且暂存至 D3[7:0]。编辑完毕便下载程序,如果数码管从左至右显示 “ABCDEF” ,那么表示实验成功。

细节一: IIC储存模块,还是IIC功能模块?

有关IIC储存器的实验曾在《整合篇》出现过,不过是作为功能类来对待。换之,本实验的IIC储存器则作为储存类来看待,然而它究竟是功能类还是储存类呢?其实这是见仁见智的问题。如果读者认为功能类有助理解,那么它就是功能类 ... 相反的,笔者认为储存类有助理解,所以承认它就是储存类。

细节二: 100Khz 与 400Khz 速率

IIC储存器——24LC04 有两种速率供我们选择,100Khz是比较规格的速率,因为SCL有50%的占空比,反之400Khz则是比较不规格的速率,因为SCL的前半周期为36%,后半周期为64%。审美而言,100Khz比400Khz美丽 ... 速度而言,400Khz比100Khz快4倍。100Khz的时序参数还有50Mhz量化结果如表16.3所示:

表16.3 相关的时序参数(50Mhz量化)

相关参数

标示

最小时间

最小时钟

最大时间

最大时钟

Clock Frequency

FCLK

---

---

100Khz

500

Clock High Time

THIGH

4000ns

200

---

---

Clock Low Time

TLOW

4700ns

235

---

---

Rise Time

TR

---

---

1000ns

50

Fall Time

TF

---

---

300ns

15

Start Hold Time

THD_STA

4000ns

200

---

---

Start Setup Time

TSU_STA

4700ns

235

---

---

Data Input Hold Time

THD_DAT

0ns

0

---

---

Data Input Setup Time

TSU_DAT

250ns

12

---

---

Stop Setup Time

TSU_STO

4000ns

200

---

---

Output Valid From Clock

TAA

---

---

3500ns

175

Bus Free Time

TBUF

4700ns

235

---

---

Verilog 的常量声明如代码16.9所示:

1. parameter FCLK = 10'd500, FHALF = 10'd250, FQUARTER = 10'd125;

2. parameter THIGH = 10'd200, TLOW = 10'd235, TR = 10'd50, TF = 10'd15;

3. parameter THD_STA = 10'd200, TSU_STA = 10'd235, TSU_STO = 10'd200;

代码16.9

细节三:完整的个体模块

实验十六的IIC储存模块已经是完整的个体模块,随之可以调用。

目录
相关文章
|
13天前
|
算法 测试技术 开发工具
基于FPGA的QPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
该系统在原有的QPSK调制解调基础上,新增了高斯信道和误码率统计模块,验证了不同SNR条件下的QPSK误码性能。系统包括数据生成、QPSK调制与解调等模块,使用Vivado 2019.2进行仿真,展示了SNR分别为15dB、10dB、5dB和1dB时的误码情况。系统采用Verilog语言实现,具有高效、可靠的特点。
28 3
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的BPSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统基于Vivado2019.2,在原有BPSK调制解调基础上新增高斯信道及误码率统计模块,可测试不同SNR条件下的误码性能。仿真结果显示,在SNR=0dB时误码较高,随着SNR增至5dB,误码率降低。理论上,BPSK与2ASK信号形式相似,但基带信号不同。BPSK信号功率谱仅含连续谱,且其频谱特性与2ASK相近。系统采用Verilog实现,包括调制、加噪、解调及误码统计等功能,通过改变`i_SNR`值可调整SNR进行测试。
27 1
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统基于FSK调制解调,通过Vivado 2019.2仿真验证了不同信噪比(SNR)下的误码率表现。加入高斯信道与误码统计模块后,仿真结果显示:SNR=16dB时误码极少;随SNR下降至0dB,误码逐渐增多。FSK利用频率变化传输信息,因其易于实现且抗干扰性强,在中低速通信中有广泛应用。2FSK信号由连续谱与离散谱构成,相位连续与否影响功率谱密度衰减特性。Verilog代码实现了FSK调制、加性高斯白噪声信道及解调功能,并计算误码数量。
37 5
|
4月前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
126 7
|
4月前
|
算法 异构计算
m基于FPGA的电子钟verilog实现,可设置闹钟,包含testbench测试文件
该文介绍了基于FPGA的电子钟设计,利用Vivado2019.2平台进行开发并展示测试结果。电子钟设计采用Verilog硬件描述语言,核心包括振荡器、分频器和计数器。时间显示为2个十进制格式,闹钟功能通过存储器和比较器实现,当当前时间等于设定时间时触发。文中给出了Verilog核心程序示例,展示了时钟信号、设置信号及输出的交互。
161 2
|
4月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
4月前
|
算法 异构计算
m基于FPGA的MPPT最大功率跟踪算法verilog实现,包含testbench
该内容包括三部分:1) 展示了Vivado 2019.2和Matlab中关于某种算法的仿真结果图像,可能与太阳能光伏系统的最大功率点跟踪(MPPT)相关。2) 简述了MPPT中的爬山法原理,通过调整光伏电池工作点以找到最大功率输出。3) 提供了一个Verilog程序模块`MPPT_test_tops`,用于测试MPPT算法,其中包含`UI_test`和`MPPT_module_U`两个子模块,处理光伏电流和电压信号。
49 1
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
升级版FPGA MSK调制解调系统集成AWGN信道模型,支持在Vivado 2019.2中设置不同SNR仿真误码率。示例SNR值从0到15,结果展示解调质量随SNR提升。MATLAB仿真验证了MSK性能,图片显示了仿真结果。 ### 理论概要 研究聚焦于软件无线电中的MSK调制解调,利用Verilog实现。MSK是一种相位连续、恒包络的二进制调制技术,优点包括频谱效率高。系统采用无核设计,关键模块包括调制器、解调器和误码检测。复位、输入数据、中频信号等关键信号通过Verilog描述,并通过Chipscope在线观察。
62 6
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
|
2月前
|
C语言 芯片 异构计算
FPGA新起点V1开发板(六-语法篇)——verilog简介+基础语法
FPGA新起点V1开发板(六-语法篇)——verilog简介+基础语法
|
4月前
|
算法 异构计算
m基于FPGA的RS+卷积级联编译码实现,RS用IP核实现,卷积用verilog实现,包含testbench测试文件
m基于FPGA的RS+卷积级联编译码实现,RS用IP核实现,卷积用verilog实现,包含testbench测试文件
47 0

热门文章

最新文章