组合数学 - 全错位排序公式

简介: 不容易系列之一 Problem Description 大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。

 

不容易系列之一

Problem Description
大家常常感慨,要做好一件事情真的不容易,确实,失败比成功容易多了!
做好“一件”事情尚且不易,若想永远成功而总从不失败,那更是难上加难了,就像花钱总是比挣钱容易的道理一样。
话虽这样说,我还是要告诉大家,要想失败到一定程度也是不容易的。比如,我高中的时候,就有一个神奇的女生,在英语考试的时候,竟然把40个单项选择题全部做错了!大家都学过概率论,应该知道出现这种情况的概率,所以至今我都觉得这是一件神奇的事情。如果套用一句经典的评语,我们可以这样总结:一个人做错一道选择题并不难,难的是全部做错,一个不对。

不幸的是,这种小概率事件又发生了,而且就在我们身边:
事情是这样的——HDU有个网名叫做8006的男性同学,结交网友无数,最近该同学玩起了浪漫,同时给n个网友每人写了一封信,这都没什么,要命的是,他竟然把所有的信都装错了信封!注意了,是全部装错哟!

现在的问题是:请大家帮可怜的8006同学计算一下,一共有多少种可能的错误方式呢?
 

 

Input
输入数据包含多个多个测试实例,每个测试实例占用一行,每行包含一个正整数n(1<n<=20),n表示8006的网友的人数。
 

 

Output
对于每行输入请输出可能的错误方式的数量,每个实例的输出占用一行。
 

 

Sample Input
2 3
 

 

Sample Output
1 2
 

 

Author
lcy
 

 

Mean: 

 略

analyse:

 就是错排公式的简单运用。下面来了解一下错排公式。

所谓错排就是全错位排序公式,即被著名数学家欧拉(Leonhard Euler,1707-1783)称为组合数论的一个妙题的“装错信封问题”,他求解这样的问题:

一个人写了n封不同的信及相应的n个不同的信封,他把这n封信都装错了信封,问都装错信封的装法有多少种?

 

递推公式:f(n)=(n-1) * {f(n-1)+f(n-2)}

 

 

Time complexity:O(n)

 

Source code:

 

// Memory   Time
// 1347K     0MS
// by : Snarl_jsb
// 2014-09-15-21.27
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<string>
#include<climits>
#include<cmath>
#define N 1000010
#define LL long long
using namespace std;

long long a[N];
void cuopai(long long n)  ////   Formula :  f(n)=(n-1)*{f(n-1)+f(n-2)} ;
{
    a[1]=0,a[2]=1;
    for(long long i=3;i<=n;i++)
    {
        a[i]=(i-1)*(a[i-1]+a[i-2]);
    }
}

int main()
{
//    freopen("C:\\Users\\ASUS\\Desktop\\cin.cpp","r",stdin);
//    freopen("C:\\Users\\ASUS\\Desktop\\cout.cpp","w",stdout);
    cuopai(30);
    int n;
    while(cin>>n)
    {
        cout<<a[n]<<endl;
    }

    return 0;
}

  

目录
相关文章
|
机器学习/深度学习 监控 算法
计算机在金融领域的应用
计算机在金融领域的应用
【Unity3D开发小游戏】Unity3D零基础一步一步教你制作跑酷类游戏
【Unity3D开发小游戏】Unity3D零基础一步一步教你制作跑酷类游戏
|
计算机视觉 Python
使用Python的OpenCV初学者的5大不可避免的方法
## 介绍: 作为初学者,当您开始使用OpenCV时,有必要了解一些几乎每次都会在opencv项目中使用的方法。下面列出的是OpenCV中最常用的五种方法(请记住OpenCV作为cv2导入)
309 0
|
5天前
|
云安全 人工智能 安全
AI被攻击怎么办?
阿里云提供 AI 全栈安全能力,其中对网络攻击的主动识别、智能阻断与快速响应构成其核心防线,依托原生安全防护为客户筑牢免疫屏障。
|
15天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
9天前
|
安全 Java Android开发
深度解析 Android 崩溃捕获原理及从崩溃到归因的闭环实践
崩溃堆栈全是 a.b.c?Native 错误查不到行号?本文详解 Android 崩溃采集全链路原理,教你如何把“天书”变“说明书”。RUM SDK 已支持一键接入。
590 212
|
4天前
|
编解码 Linux 数据安全/隐私保护
教程分享免费视频压缩软件,免费视频压缩,视频压缩免费,附压缩方法及学习教程
教程分享免费视频压缩软件,免费视频压缩,视频压缩免费,附压缩方法及学习教程
234 138
|
存储 人工智能 监控
从代码生成到自主决策:打造一个Coding驱动的“自我编程”Agent
本文介绍了一种基于LLM的“自我编程”Agent系统,通过代码驱动实现复杂逻辑。该Agent以Python为执行引擎,结合Py4j实现Java与Python交互,支持多工具调用、记忆分层与上下文工程,具备感知、认知、表达、自我评估等能力模块,目标是打造可进化的“1.5线”智能助手。
828 60