对全概率公式和贝叶斯公式的理解

简介: 对全概率公式和贝叶斯公式的理解         我该怎么来理解这2个公式呢?打个比方,假设学校的奖学金都采取申请制度,只有满足一定的条件你才能拿到这比奖学金。那么有哪些原因能够使你有可能拿到奖学金呢?1、三好学生,拿到奖学金的概率是p(A1)=0.3。

对全概率公式和贝叶斯公式的理解

        我该怎么来理解这2个公式呢?打个比方,假设学校的奖学金都采取申请制度,只有满足一定的条件你才能拿到这比奖学金。那么有哪些原因能够使你有可能拿到奖学金呢?1、三好学生,拿到奖学金的概率是p(A1)=0.3。 2、四好学生,拿到奖学金的概率是p(A2)=0.4。3、五好学生,拿到奖学金的概率是p(A3)=0.5。4、六好学生,拿到奖学金的概率是p(A4)=0.6。这些学生只能是三好四好五好六好学生种的一种,不能跨种类。这个学校学生是三好学生的概率是p(B1)=0.4,四好学生的概率是p(B2)=0.3,五好学生的概率是p(B3)=0.2,六好学生的概率是p(B4)=0.1。现在问题出来了,一个学生能够拿到奖学金的概率是多少?

       慢慢来分析,导致一个学生拿到奖学金的方式有哪些?这个学生是三好学生,刚好他又凭借三好学生的身份申请到了奖学金p1=p(A1)*p(B1|A1)=0.4*0.3=0.12;这个学生是四好学生,刚好凭借他四好学生的身份拿到了奖学金,p2=p(A2)*p(B2|A2)=0.3*0.4=0.12;这个学生是五好学生,刚好凭借他五好学生的身份拿到奖学金,p3=p(A3)*p(B3|A3)=0.2*0.5=0.10;这个学生是六好学生,刚好凭借他六好学生的身份拿到了奖学金,p4=p(A4)*p(B4|A4)=0.1*0.6=0.06。四种方式都能导致一个学生拿到奖学金,那么拿到奖学金的概率为p=p1+p2+p3+p4=0.4.所以这么理解全概率公式:导致一个事件发生的原因有很多种(各种原因互斥),那么这个事件发生的概率就是每种原因引起该事件发生的概率的总和。

       一个学生已经拿到了奖学金,这个学生是三好学生的概率是多少?p=p1/(p1+p2+p3+p4)=0.3。怎么理解呢?一个事件已经发生了,有很多原因都能导致这个事件发生。那么其中的一种原因导致该事件发生的概率是多少?这就是贝叶斯概率公式解决的问题。就正如一本书现在已经被别人借走了(事件已经发生),已知只有可能是张三,李四,王五这3个人借走(事件发生的所有原因)。那么这本书被张三借走的概率会是多大呢?

        现在是不是已经理解了这2个公式呢。

 

目录
相关文章
【概率论基础】Probability | 数学性概率 | 统计性概率 | 几何概率 | 概率论三大公理
【概率论基础】Probability | 数学性概率 | 统计性概率 | 几何概率 | 概率论三大公理
117 0
【概率論】常用專業名詞中韓對照表 | 확률론 한중 번역표
【概率論】常用專業名詞中韓對照表 | 확률론 한중 번역표
70 0
14 棣莫弗的二项概率逼近
14 棣莫弗的二项概率逼近
69 0
第8章 概率统计——8.3 累积概率分布
第8章 概率统计——8.3 累积概率分布
第8章 概率统计——8.3 累积概率分布
|
Serverless
第8章 概率统计——8.2 概率密度计算
第8章 概率统计——8.2 概率密度计算
|
机器学习/深度学习
先验分布、后验分布、似然估计、贝叶斯估计、最大似然估计
先验分布、后验分布、似然估计、贝叶斯估计、最大似然估计
206 0
先验分布、后验分布、似然估计、贝叶斯估计、最大似然估计
|
机器学习/深度学习
概率和似然
在日常生活中,我们经常使用这些术语。但是在统计学和机器学习上下文中使用时,有一个本质的区别。本文将用理论和例子来解释概率和似然之间的关键区别。
141 0
概率和似然
【数理统计】均值检验(双侧、单侧)和区间估计
【数理统计】均值检验(双侧、单侧)和区间估计
422 0
【数理统计】均值检验(双侧、单侧)和区间估计
L5-参数估计:矩估计与极大似然估计
L5-参数估计:矩估计与极大似然估计
L5-参数估计:矩估计与极大似然估计
|
人工智能 开发者
后验概率估计 | 学习笔记
快速学习后验概率估计
后验概率估计 | 学习笔记