网络爬虫-原理篇(一)

简介:   引入:我们在百度首页输入关键字,百度一下,相关的内容就会立马呈现出来,这个动作的背后到底隐藏着哪些操作?   其实百度的核心搜索引擎就是一个大型的分布式网络爬虫程序。   什么是网络爬虫? 详见:   1.百度百科   2. 维基百科   网络爬虫的主要目的是将互联网上的网页下载到本地形成一个或联网内容的镜像备份。

  引入:我们在百度首页输入关键字,百度一下,相关的内容就会立马呈现出来,这个动作的背后到底隐藏着哪些操作?

  其实百度的核心搜索引擎就是一个大型的分布式网络爬虫程序。

  什么是网络爬虫? 详见:

  1.百度百科

  2. 维基百科

  网络爬虫的主要目的是将互联网上的网页下载到本地形成一个或联网内容的镜像备份。这篇博客主要对爬虫以及抓取系统进行一个简单的概述。

一、网络爬虫的基本结构及工作流程

    一个通用的网络爬虫的框架如图所示:

    网络爬虫的基本工作流程如下:

    1.首先选取一部分精心挑选的种子URL;(URL)

    2.将这些URL放入待抓取URL队列;

    3.从待抓取URL队列中取出待抓取在URL,解析DNS,并且得到主机的ip,并将URL对应的网页下载下来,存储进已下载网页库中。此外,将这些URL放进已抓取URL队列。

    4.分析已抓取URL队列中的URL,分析其中的其他URL,并且将URL放入待抓取URL队列,从而进入下一个循环。

二、从爬虫的角度对互联网进行划分

    对应的,可以将互联网的所有页面分为五个部分:

    1.已下载未过期网页

    2.已下载已过期网页:抓取到的网页实际上是互联网内容的一个镜像与备份,互联网是动态变化的,一部分互联网上的内容已经发生了变化,这时,这部分抓取到的网页就已经过期了。

    3.待下载网页:也就是待抓取URL队列中的那些页面

    4.可知网页:还没有抓取下来,也没有在待抓取URL队列中,但是可以通过对已抓取页面或者待抓取URL对应页面进行分析获取到的URL,认为是可知网页。

    5.还有一部分网页,爬虫是无法直接抓取下载的。称为不可知网页。

三、抓取策略

    在爬虫系统中,待抓取URL队列是很重要的一部分。待抓取URL队列中的URL以什么样的顺序排列也是一个很重要的问题,因为这涉及到先抓取那个页面,后抓取哪个页面。而决定这些URL排列顺序的方法,叫做抓取策略。下面重点介绍几种常见的抓取策略:

    1.深度优先遍历策略

深度优先遍历策略是指网络爬虫会从起始页开始,一个链接一个链接跟踪下去,处理完这条线路之后再转入下一个起始页,继续跟踪链接。我们以下面的图为例:

    遍历的路径:A-F-G  E-H-I B C D

    2.宽度优先遍历策略

    宽度优先遍历策略的基本思路是,将新下载网页中发现的链接直接插入待抓取URL队列的末尾。也就是指网络爬虫会先抓取起始网页中链接的所有网页,然后再选择其中的一个链接网页,继续抓取在此网页中链接的所有网页。还是以上面的图为例:

    遍历路径:A-B-C-D-E-F G H I

  而我们在实际爬虫运用中很少用到DFS的遍历策略,原因是深度优先策略很容易陷入网络黑洞,而且不好控制深入的深度。

    3.反向链接数策略

    反向链接数是指一个网页被其他网页链接指向的数量。反向链接数表示的是一个网页的内容受到其他人的推荐的程度。因此,很多时候搜索引擎的抓取系统会使用这个指标来评价网页的重要程度,从而决定不同网页的抓取先后顺序。

    在真实的网络环境中,由于广告链接、作弊链接的存在,反向链接数不能完全等他我那个也的重要程度。因此,搜索引擎往往考虑一些可靠的反向链接数。

    4.Partial PageRank策略

    Partial PageRank算法借鉴了PageRank算法的思想:对于已经下载的网页,连同待抓取URL队列中的URL,形成网页集合,计算每个页面的PageRank值,计算完之后,将待抓取URL队列中的URL按照PageRank值的大小排列,并按照该顺序抓取页面。

    如果每次抓取一个页面,就重新计算PageRank值,一种折中方案是:每抓取K个页面后,重新计算一次PageRank值。但是这种情况还会有一个问题:对于已经下载下来的页面中分析出的链接,也就是我们之前提到的未知网页那一部分,暂时是没有PageRank值的。为了解决这个问题,会给这些页面一个临时的PageRank值:将这个网页所有入链传递进来的PageRank值进行汇总,这样就形成了该未知页面的PageRank值,从而参与排序。下面举例说明:

    5.OPIC策略策略

    该算法实际上也是对页面进行一个重要性打分。在算法开始前,给所有页面一个相同的初始现金(cash)。当下载了某个页面P之后,将P的现金分摊给所有从P中分析出的链接,并且将P的现金清空。对于待抓取URL队列中的所有页面按照现金数进行排序。

    6.大站优先策略

    对于待抓取URL队列中的所有网页,根据所属的网站进行分类。对于待下载页面数多的网站,优先下载。这个策略也因此叫做大站优先策略。 

参考书目:

1.《这就是搜索引擎——核心技术详解》  张俊林  电子工业出版社

2.《搜索引擎技术基础》         刘奕群等 清华大学出版社

个人推荐书籍:

1.《自己动手写网络爬虫》            罗刚   王振东      清华大学出版社

 
 
 
目录
相关文章
|
21天前
|
数据采集 监控 数据库
爬虫技术详解:从原理到实践
本文详细介绍了爬虫技术,从基本概念到实际操作,涵盖爬虫定义、工作流程及Python实现方法。通过使用`requests`和`BeautifulSoup`库,演示了如何发送请求、解析响应、提取和保存数据,适合初学者学习。强调了遵守法律法规的重要性。
108 4
|
2月前
|
网络协议 安全 5G
网络与通信原理
【10月更文挑战第14天】网络与通信原理涉及众多方面的知识,从信号处理到网络协议,从有线通信到无线通信,从差错控制到通信安全等。深入理解这些原理对于设计、构建和维护各种通信系统至关重要。随着技术的不断发展,网络与通信原理也在不断演进和完善,为我们的生活和工作带来了更多的便利和创新。
69 3
|
3月前
|
并行计算 安全 网络协议
探索未来网络:量子互联网的原理与应用
本文深入探讨了量子互联网的基本概念、技术原理及其潜在应用。通过对量子纠缠、量子叠加和量子隐形传态等核心概念的解释,文章展示了量子互联网如何利用量子力学特性来实现超高速、超高安全性的通信。此外,还讨论了量子互联网在金融、医疗、国防等领域的应用前景,以及当前面临的技术挑战和未来的发展方向。
78 2
|
28天前
|
运维 物联网 网络虚拟化
网络功能虚拟化(NFV):定义、原理及应用前景
网络功能虚拟化(NFV):定义、原理及应用前景
42 3
|
1月前
|
网络协议 安全 算法
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
实战:WireShark 抓包及快速定位数据包技巧、使用 WireShark 对常用协议抓包并分析原理 、WireShark 抓包解决服务器被黑上不了网等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(9):WireShark 简介和抓包原理及实战过程一条龙全线分析——就怕你学成黑客啦!
|
2月前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
177 1
|
2月前
|
网络协议 Linux 应用服务中间件
Socket通信之网络协议基本原理
【10月更文挑战第10天】网络协议定义了机器间通信的标准格式,确保信息准确无损地传输。主要分为两种模型:OSI七层模型与TCP/IP模型。
|
2月前
|
存储 安全 算法
网络安全与信息安全:构建数字世界的防线在数字化浪潮席卷全球的今天,网络安全与信息安全已成为维系现代社会正常运转的关键支柱。本文旨在深入探讨网络安全漏洞的成因与影响,剖析加密技术的原理与应用,并强调提升公众安全意识的重要性。通过这些综合性的知识分享,我们期望为读者提供一个全面而深刻的网络安全视角,助力个人与企业在数字时代中稳健前行。
本文聚焦网络安全与信息安全领域,详细阐述了网络安全漏洞的潜在威胁、加密技术的强大防护作用以及安全意识培养的紧迫性。通过对真实案例的分析,文章揭示了网络攻击的多样性和复杂性,强调了构建全方位、多层次防御体系的必要性。同时,结合当前技术发展趋势,展望了未来网络安全领域的新挑战与新机遇,呼吁社会各界共同努力,共筑数字世界的安全防线。
|
2月前
|
存储 安全 自动驾驶
探索未来网络:量子互联网的原理与应用
【10月更文挑战第2天】 本文旨在探讨量子互联网的基本原理、技术实现及其在通讯领域的革命性应用前景。量子互联网利用量子力学原理,如量子叠加和量子纠缠,来传输信息,有望大幅提升通信的安全性和速度。通过详细阐述量子密钥分发(QKD)、量子纠缠交换和量子中继等关键技术,本文揭示了量子互联网对未来信息社会的潜在影响。
|
2月前
|
数据采集 JavaScript 前端开发
JavaScript逆向爬虫——无限debugger的原理与绕过
JavaScript逆向爬虫——无限debugger的原理与绕过
95 2