c++11特性与cocos2d-x 3.0之std::bind与std::function

简介: <div style="top: 0px;"></div><span style="font-family:宋体;font-size:14px;"></span><h1 style="margin: 0.67em 0cm 7.5pt; mso-pagination: widow-orphan;"><span style="font-family:Verdana;color:black;


原文地址:http://www.cnblogs.com/slysky/p/3822640.html

作者:阳光下的蒲公英

c++11特性与cocos2d-x 3.0std::bindstd::function

昨天同事让帮忙写一小功能,才发现cocos2d-x 3.0 cocos2d-x 3.0rc0 差别还是相当大的。

发现Label这一个控件,3.0就比rc0版本多了一个创建函数,更为关键的是3.0内的Label锚点是在ccp(0.5,0.5),而一直3.0rc0ccp(0,0)

累觉不爱。尽管cocos2d-x改变太快,兼容性一次次的暴露出不足,但是,总归是向好的方向进行。于是下载了3.0来玩玩~

cocos new 出新的项目之后,仔细阅读代码,才发现了一句3.0区别于2.0的代码:

1     auto closeItem = MenuItemImage::create(2                                            "CloseNormal.png",3                                            "CloseSelected.png",4                                            CC_CALLBACK_1(HelloWorld::menuCloseCallback, this));

2.0内的代码用的不是CC_CALLBACK_1而是menu_selector.

CC_CALLBACK系列是3.0基于c++11的特性新增的。CC_CALLBACK系列的定义如下:

1 // new callbacks based on C++112 #define CC_CALLBACK_0(__selector__,__target__, ...) std::bind(&__selector__,__target__, ##__VA_ARGS__)3 #define CC_CALLBACK_1(__selector__,__target__, ...) std::bind(&__selector__,__target__, std::placeholders::_1, ##__VA_ARGS__)4 #define CC_CALLBACK_2(__selector__,__target__, ...) std::bind(&__selector__,__target__, std::placeholders::_1, std::placeholders::_2, ##__VA_ARGS__)5 #define CC_CALLBACK_3(__selector__,__target__, ...) std::bind(&__selector__,__target__, std::placeholders::_1, std::placeholders::_2, std::placeholders::_3, ##__VA_ARGS__)

可以看出,CC_CALL_BACK系统后的数字,表示函数指针的参数个数。明白了这一点,选择CC_CALLBACK时,就不会出错鸟。

而看示例代码时,还会发现一个有意思的使用方法:

1                 listener->onTouchesBegan = CC_CALLBACK_2(Layer::onTouchesBegan, this);

此时不禁要问onTouchesBegan又是啥,为啥不能直接函数指针赋值呢?

看定义就能明白了

1     std::function<void(const std::vector<Touch*>&, Event*)> onTouchesBegan;

因为CC_CALLBACK系列是std::bind,onTouchesBeganstd::function来定义的。那么std::bindstd::function又有什么区别呢?

有博文说:

function模板类和bind模板函数,使用它们可以实现类似函数指针的功能,但却比函数指针更加灵活,特别是函数指向类的非静态成员函数时。

std::function可以绑定到全局函数/类静态成员函数(类静态成员函数与全局函数没有区别),如果要绑定到类的非静态成员函数,则需要使用std::bind

标准库函数bind()function()定义于头文件<functional>中(该头文件还包括许多其他函数对象),用于处理函数及函数参数。

std::bind绑定器

  • 将函数、成员函数和闭包转成function函数对象

  • 将多元(n>1)函数转成一元函数或者(n-1)元函数。

bind()接受一个函数(或者函数对象,或者任何你可以通过"(...)"符号调用的事物),生成一个其有某一个或多个函数参数被绑定或重新组织的函数对象。(译注:顾名思义,bind()函数的意义就像它的函数名一样,是用来绑定函数调用的某些参数的。)例如:

1         int f(int, char, double);2         auto ff = bind(f, _1, 'c', 1.2);    // 绑定f()函数调用的第二个和第三个参数,返回一个新的函数对象为ff,它只带有一个int类型的参数3         int x = ff(7);                //  f(7, 'c', 1.2);

参数的绑定通常称为"Currying"(译注:Currying---“烹制咖喱烧菜,此处意指对函数或函数对象进行加工修饰操作), "_1"是一个占位符对象,用于表示当函数f通过函数ff进行调用时,函数ff的第一个参数在函数f的参数列表中的位置。第一个参数称为"_1", 第二个参数为"_2",依此类推。例如:

1         int f(int, char, double);2         auto frev = bind(f, _3, _2, _1);        // 翻转参数顺序3         int x = frev(1.2, 'c', 7);            // f(7, 'c', 1.2);

    此处,auto关键字节约了我们去推断bind返回的结果类型的工作。
    
我们无法使用bind()绑定一个重载函数的参数,我们必须显式地指出需要绑定的重载函数的版本:

1
         int g(int);2         double g(double);3 4         auto g1 = bind(g, _1);                // 错误:调用哪一个g() ?5         auto g2 = bind( (double(*)(double))g, _1);    // 正确,但是相当丑陋

 1 void H(int a); 2 //绑定全局函数 3 auto f11 = std::bind(H, std::placeholders::_1); 4 auto的类型实际上是std::function<void(int)> 5  6 //绑定带参数的成员函数 7 std::function<void (char*, int)> f = std::bind(&ReadHandler::ConnectPreProcess, this, std::placeholders::_1, std::placeholders::_1); 8  9 //三元函数转换成一元函数10 int f(int, char, double);11 // 绑定f()函数调用的第二个和第三个参数,12 // 返回一个新的函数对象为ff,它只带有一个int类型的参数13 auto ff = bind(f, _1, ‘c’, 1.2);    14 int x = ff(7);

自己写代码示例如下:

int Func(int x, int y);
auto bf1 = std::bind(Func, 10, std::placeholders::_1);
bf1(20); ///< same as Func(10, 20)int HelloWorld::AddFunc( int a, int b )
{
    return a + b;
}
bool HelloWorld::init()
{

    auto bf2 = std::bind(&HelloWorld::AddFunc,this , std::placeholders::_1, std::placeholders::_2 );
    auto result1 = bf2(10, 20); ///< same as a.Func(10, 20)
    std::function< int(int)> bf3 = std::bind(&HelloWorld::AddFunc, this, std::placeholders::_1, 100);
    auto result2 = bf3(10); ///< same as a.Func(10, 100)
}

上面的例子中,bf1是把一个两个参数普通函数的第一个参数绑定为10,生成了一个新的一个参数的可调用实体体; bf2是把一个类成员函数绑定了类对象,生成了一个像普通函数一样的新的可调用实体; bf3是把类成员函数绑定了类对象和第二个参数,生成了一个新的std::function对象。看懂了上面的例子,下面我们来说说使用bind需要注意的一些事项:

  • 1bind预先绑定的参数需要传具体的变量或值进去,对于预先绑定的参数,是pass-by-value

  • 2)对于不事先绑定的参数,需要传std::placeholders进去,从_1开始,依次递增。placeholderpass-by-reference

  • 3bind的返回值是可调用实体,可以直接赋给std::function对象

  • 4)对于绑定的指针、引用类型的参数,使用者需要保证在可调用实体调用之前,这些参数是可用的

  • 5)类的this可以通过对象或者指针来绑定

std::function

它是函数、函数对象、函数指针、和成员函数的包装器,可以容纳任何类型的函数对象,函数指针,引用函数,成员函数的指针。
以统一的方式处理函数、函数对象、函数指针、和成员函数。允许保存和延迟执行函数。

  • 函数和成员函数作为function

function是一个拥有任何可以以"(...)"符号进行调用的值的类型。特别地,bind的返回结果可以赋值给function类型。function十分易于使用。(译注:更直观地,可以把function看成是一种表示函数的数据类型,就像函数对象一样。只不过普通的数据类型表示的是数据,function表示的是函数这个抽象概念。)例如:

 
1 typedef std::function<float (int x, int y)> f ;// 构造一个函数对象,它能表示的是一个返回值为float,两个参数为int,int的函数   2 struct int_div {        // 构造一个可以使用"()"进行调用的函数对象类型   3     float operator() (int x, int y) const { return ((float)x)/y; }; 4 }; 5  6 void HelloWorld::testing() 7 { 8     f f1= int_div();                    // 赋值   9     auto result3 = f1( 10, 2);10 }

成员函数可被看做是带有额外参数的自由函数:

 1 struct int_div {        // 构造一个可以使用"()"进行调用的函数对象类型   2     float operator() (int x, int y) const { return ((float)x)/y; }; 3     int int_div_fun( int x ){ return x; }; 4 }; 5 typedef std::function<int (int_div*, int)> f_2; 6  7 bool HelloWorld::init() 8 { 9     f_2 f2 = std::mem_fn(&int_div::int_div_fun);            // 指向成员函数10 11     int_div int_div_object;12     int v = f2(&int_div_object, 5);  // 在对象x上用参数5调用X::foo()13     std::function<int (int)> ff = std::bind( f2, &int_div_object, std::placeholders::_1);    // f的第一个参数是&x14     v = ff(5);                // 调用x.foo(5)15 16 17 }

ps:vs2012bug给坑了。因为看网上的代码于是刚开始第9行是这么写的:f_2 f2 = &int_div::int_div_fun; 

然后就报错误:Error 1 error C2664:'std::_Func_class<_Ret,_V0_t,_V1_t>::_Set' : cannot convert parameter 1from '_Myimpl *' to 'std::_Func_base<_Rx,_V0_t,_V1_t> *'

查了一下,vs2010没有这个编译错误,但是2012有。2012必须得加上std::mem_fn才能编译。

  • 可以用function取代函数指针。因为它可以保存函数延迟执行,所以比较适合作为回调函数,也可以把它看做类似于c#中特殊的委托,只有一个成员的委托。

 
1 struct int_div {        // 构造一个可以使用"()"进行调用的函数对象类型   2     float operator() (int x, int y) const { return ((float)x)/y; }; 3     int int_div_fun( int x ){ return x; }; 4  5     int_div( std::function<void()>& f ):m_callback(f){}; 6     void Notify() 7     { 8         m_callback(); 9     }10     std::function<void()> m_callback;11 };

  • function还可以作为函数入参,这样可以在函数外部控制函数的内部行为了,让我们的函数变得更加灵活。

void Foo(int x, std::function<void(int)>& f)
{if(x%2==0)
f(x);
}
void G(int x)
{
cout<<x<<endl;
}
void H(int x)
{
cout<<x+2<<endl;
}
void TestFoo()
{
auto f = std::bind(G, std::placeholders::_1); 
Foo(4, f);
//在Foo函数外面更改f的行为
f = std::bind(H, std::placeholders::_1);
Foo(4, f);
}

c++11中推出function是为了泛化函数对象,函数指针,引用函数,成员函数的指针,让我们可以按更统一的方式写出更加泛化的代码;推出bind是为了替换和增强之前标准库的bind1stbind2st,让我们的用起来更方便!

更多精品iOSCocos、移动设计课程请关注智捷课堂官方网站:http://www.zhijieketang.com

 

 

 


目录
相关文章
|
1月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
58 12
|
7月前
|
编译器 程序员 定位技术
C++ 20新特性之Concepts
在C++ 20之前,我们在编写泛型代码时,模板参数的约束往往通过复杂的SFINAE(Substitution Failure Is Not An Error)策略或繁琐的Traits类来实现。这不仅难以阅读,也非常容易出错,导致很多程序员在提及泛型编程时,总是心有余悸、脊背发凉。 在没有引入Concepts之前,我们只能依靠经验和技巧来解读编译器给出的错误信息,很容易陷入“类型迷路”。这就好比在没有GPS导航的年代,我们依靠复杂的地图和模糊的方向指示去一个陌生的地点,很容易迷路。而Concepts的引入,就像是给C++的模板系统安装了一个GPS导航仪
226 59
|
6月前
|
安全 编译器 C++
【C++11】新特性
`C++11`是2011年发布的`C++`重要版本,引入了约140个新特性和600个缺陷修复。其中,列表初始化(List Initialization)提供了一种更统一、更灵活和更安全的初始化方式,支持内置类型和满足特定条件的自定义类型。此外,`C++11`还引入了`auto`关键字用于自动类型推导,简化了复杂类型的声明,提高了代码的可读性和可维护性。`decltype`则用于根据表达式推导类型,增强了编译时类型检查的能力,特别适用于模板和泛型编程。
63 2
|
7月前
|
存储 编译器 C++
【C++】面向对象编程的三大特性:深入解析多态机制(三)
【C++】面向对象编程的三大特性:深入解析多态机制
|
7月前
|
C++
C++ 20新特性之结构化绑定
在C++ 20出现之前,当我们需要访问一个结构体或类的多个成员时,通常使用.或->操作符。对于复杂的数据结构,这种访问方式往往会显得冗长,也难以理解。C++ 20中引入的结构化绑定允许我们直接从一个聚合类型(比如:tuple、struct、class等)中提取出多个成员,并为它们分别命名。这一特性大大简化了对复杂数据结构的访问方式,使代码更加清晰、易读。
94 0
|
3月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
2月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
60 16
|
2月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
2月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
3月前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)

热门文章

最新文章