R语言之中文分词:实例

简介: 一、说明       网上提供的一个例子,做了修改与订正。 二、程序 #调入分词的库 library("rJava") library("Rwordseg") #调入绘制词云的库 library("RColorBrewer") library("wordcloud")         #读入数据(特别注意,read.

一、说明

      网上提供的一个例子,做了修改与订正。

二、程序

#调入分词的库
library("rJava")
library("Rwordseg")
#调入绘制词云的库
library("RColorBrewer")
library("wordcloud")    
   
#读入数据(特别注意,read.csv竟然可以读取txt的文本)
myfile<-read.csv(file.choose(),header=FALSE)
   
#预处理,这步可以将读入的文本转换为可以分词的字符,没有这步不能分词
myfile.res <- myfile[myfile!=" "]    
   
#分词,并将分词结果转换为向量
myfile.words <- unlist(lapply(X = myfile.res,FUN = segmentCN))
   
#剔除URL等各种不需要的字符,还需要删除什么特殊的字符可以依样画葫芦在下面增加gsub的语句
myfile.words <- gsub(pattern="http:[a-zA-Z\\/\\.0-9]+","",myfile.words)
myfile.words <- gsub("\n","",myfile.words)
myfile.words <- gsub(" ","",myfile.words)
   
#去掉停用词
data_stw=read.table(file=file.choose(),colClasses="character")
stopwords_CN=c(NULL)
for(i in 1:dim(data_stw)[1]){
stopwords_CN=c(stopwords_CN,data_stw[i,1])
}
for(j in 1:length(stopwords_CN)){
myfile.words <- subset(myfile.words,myfile.words!=stopwords_CN[j])
}
#过滤掉1个字的词
myfile.words <- subset(myfile.words, nchar(as.character(myfile.words))>1)
   
#统计词频
myfile.freq <- table(unlist(myfile.words))
myfile.freq <- rev(sort(myfile.freq))
#myfile.freq <- data.frame(word=names(myfile.freq),freq=myfile.freq);
   
#按词频过滤词,过滤掉只出现过一次的词,这里可以根据需要调整过滤的词频数
#特别提示:此处注意myfile.freq$Freq大小写
myfile.freq2=subset(myfile.freq, myfile.freq$Freq>=10)    
   
#绘制词云
#设置一个颜色系:
mycolors <- brewer.pal(8,"Dark2")
#设置字体
windowsFonts(myFont=windowsFont("微软雅黑"))
#画图
wordcloud(myfile.freq2$word,myfile.freq2$Freq,min.freq=10,max.words=Inf,random.order=FALSE,
random.color=FALSE,colors=mycolors,family="myFont")

 

三、结果

 


作者:张子良
出处:http://www.cnblogs.com/hadoopdev
本文版权归作者所有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
21天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
68 3
|
6月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)

热门文章

最新文章