一次诊断和解决CPU利用率超高的例子

简介:
业务人员报告说不能登录系统,业务几乎停顿.
听到这个消息首先登录主机执行如下命令

[/@zzld03]#sar -u 1 10

 

HP-UX zzld03 B.11.23 U ia64    04/16/13

 

10:32:25    %usr    %sys    %wio   %idle

10:32:26      63       1      26      10

10:32:27      53       1      23      23

10:32:28      49       3      33      16

10:32:29      43       1      39      18

10:32:30      39       1      34      26

10:32:31      35       0      40      24

10:32:32      41       1      37      21

10:32:33      43       1      42      15

10:32:34      40       4      40      15

10:32:35      57      11      27       5

 

Average       46       2      34      17

发现cpu消耗很高

执行top命令检查

从上面的top命令的监控情况来看pid=9362的进程消耗了95.55%的cpu

select s.sid,s.username,s.event,s.wait_time,s.state,s.seconds_in_wait,p.PROGRAM,s.MACHINE

from v$session s,v$process p

where p.spid=9362 and s.PADDR=p.ADDR


根据进程9362找到的语句如下:

select tt.indi_id as indi_id,         tt.folk_code as folk_code,         tt.urban_type as urban_type,         e.mt_pers_type as pers_type,         tt.pers_type as pers_type_detail,         tt.culture_code as culture_code,         tt.housereg_type as housereg_type,         tt.job_sta_code as job_sta_code,         tt.city_code as city_code,         tt.occu_grade_code as occu_grade_code,         tt.indi_sta as indi_sta,         tt.kindred_code as kindred_code,         tt.insr_code as insr_code,         tt.name as name,         decode(tt.sex, '1', '', '0', '', '未知') as sex,         to_char(tt.birthday, 'yyyy-mm-dd') as birthday,         tt.idcard as idcard,         tt.native as native,         to_char(tt.job_date, 'yyyy-mm-dd') as job_date,         tt.retire_date as retire_date,         tt.telephone as telephone,         tt.address as address,         tt.post_code as post_code,         tt.marri_sta as marri_sta,         tt.pre_job_years as pre_job_years,         tt.all_job_years as all_job_years,         tt.host_indi_id as host_indi_id,         tt.nothing_flag as nothing_flag,         tt.speical_pers_flag as speical_pers_flag,         tt.remark as remark,         d.folk_name as folk_name,         e.pers_name as pers_name,         f.culture_name as culture_name,         g.housereg_name as housereg_name,         h.job_sta_name as job_sta_name,         i.city_name as city_name,         i.city_class as city_class,         j.occu_grade_name as occu_grade_name,         k.indi_sta_name as indi_sta_name,         l.kindred_name as kindred_name,         tt.insr_detail_code as insr_detail_code,         tt.corp_id as corp_id,         to_char(tt.begin_date, 'yyyy-mm-dd') as begin_date,         to_char(tt.end_date,'yyyy-mm-dd') as end_date,         tt.indi_join_sta as indi_join_sta,         tt.occu_code as occu_code,         tt.freeze_sta as freeze_sta,         tt.posi_code as posi_code,         tt.hire_type as hire_type,         tt.work_type as work_type,         nvl(tt.official_code, '00') as official_code,         tt.special_code as special_code,         tt.indi_ins_no as indi_ins_no,         tt.total_salary as total_salary,         tt.indi_join_flag as indi_join_flag,         m.occupation_name as occupation_name,         n.position_name as position_name,         o.hire_name as hire_name,         p.work_type_name as work_type_name,         q.special_name as special_name,         tt.corp_name as corp_name,         tt.corp_code as corp_code,         tt.corp_type_code as corp_type_code,         tt.corp_type_name as corp_type_name,         tt.center_id as center_id,         tt.veteran_benefit_name as veteran_benefit,         decode(tt.official_code,'0','一般干部','1','副厅以上','2','副厅以下', t.official_name) as official_name,         u.center_name as center_name,         nvl(v.last_balance, 0) as last_balance    from (select /*+rule*/           a.indi_id,           a.folk_code,           a.urban_type,           a.pers_type,           a.culture_code,           a.housereg_type,           a.job_sta_code,           a.city_code,           a.occu_grade_code,           a.indi_sta,           a.kindred_code,           a.insr_code,           a.name,           a.sex,           a.birthday,           a.idcard,           a.native,           a.job_date,           a.retire_date,           a.telephone,         a.address,           a.post_code,           a.marri_sta,           a.pre_job_years,           a.all_job_years,           a.host_indi_id,           a.nothing_flag,           a.speical_pers_flag,           decode(a.city_code,null,a.remark,(select city.city_name From bs_city city where city.city_code = a.city_code)) remark,           (select bct.corp_type_name From bs_corp_type bct where bct.corp_type_code = s.corp_type_code and bct.center_id = s.center_id) corp_type_name,           b.insr_detail_code,           b.corp_id,           b.begin_date,           b.end_date,           b.indi_join_sta,           c.occu_code,           decode( decode(nvl(p.freeze_sta,'0'),'0',nvl(b.freeze_sta, '0'),'1','9') , '0', '基金未冻结', '1','基金已冻结','9','单位已冻结') as freeze_sta,           c.posi_code,           c.hire_type,           c.work_type,           nvl(x.veteran_benefit_name,'非优抚对象') as veteran_benefit_name,    decode(a.pers_type,'3',nvl(c.office_grade,'0'),c.official_code) as official_code,           c.special_code,           c.indi_ins_no,           c.total_salary,           c.indi_join_flag,           s.corp_name,           s.corp_code,           s.corp_type_code,           s.center_id            from bs_corp s,                  bs_pres_insur b,                  bs_corp_insure p,                  bs_corp_pres c,                  bs_veteran_benefit x,                  bs_insured a   where (a.idcard  ='430204850922611' or a.idcard = '430204198509226110') and   a.indi_id = b.indi_id and       a.veteran_benefit_type = x.veteran_benefit_type(+) and                              decode(b.insr_detail_code,'12','2','21','2','17','2',b.insr_detail_code) = DECODE(a.Sex||'~'||a.Pers_Type||'~'||C.INDI_JOIN_FLAG||'~'||'2','0~1~1~7','2','0~2~1~7','2','2') and   decode(p.insr_detail_code,'12','2','21','2','17','2',p.insr_detail_code) = DECODE(a.Sex||'~'||a.Pers_Type||'~'||C.INDI_JOIN_FLAG||'~'||'2','0~1~1~7','2','0~2~1~7','2','2') and   s.corp_id = c.corp_id and                              s.corp_id = p.corp_id and                              b.insr_detail_code = p.insr_detail_code and   b.indi_id = c.indi_id and                              b.corp_id = s.corp_id) tt,                             bs_folk d,                                             bs_person_type e,                                      bs_culture_stac f,                                     bs_housereg_type g,                                    bs_job_stac h,                                         bs_city i,                                             bs_occupation_grade j,                                 bs_pers_status k,                                      bs_kindred l,                                          bs_occupation m,                                       bs_position n,                                         bs_hired_type o,                                       bs_work_type p,                                        bs_special q,                                          bs_official t,                                         bs_center u,                                           bs_mdi_indi_acc v                                      where tt.folk_code = d.folk_code (+) and                     tt.pers_type = e.pers_type (+) and                     tt.center_id = e.center_id (+) and                     tt.culture_code = f.culture_code (+) and               tt.housereg_type = g.housereg_type (+) and             tt.job_sta_code = h.job_sta_code (+) and               tt.city_code = i.city_code (+) and                     tt.occu_grade_code = j.occu_grade_code (+) and         tt.indi_sta = k.indi_sta (+) and                     tt.kindred_code = l.kindred_code (+) and               tt.occu_code = m.occu_code (+) and                     tt.posi_code = n.posi_code (+) and                     tt.hire_type = o.hire_type (+) and                     tt.work_type = p.work_type (+) and                     tt.special_code = q.special_code (+) and               tt.official_code = t.official_code (+) and             tt.indi_id = v.indi_id (+) and                         1 = v.acco_sta (+) and                                 tt.center_id = u.center_id                         and tt.center_id in ('430300')             

后通过查看该语句的执行计划,发现没有选择合适的索引造成的,而没有选择合适的索引是因为在查询中使用了/*+rule */提示,将该提示去掉后,语句执行正常cpu的利用率也恢复正常,应用也恢复正常.

这就是典刑的一条sql语句拖垮整个系统的案例.

目录
相关文章
|
8月前
|
消息中间件 SQL Kafka
Flink CPU问题之CPU利用率低如何解决
Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。
|
2月前
|
缓存 监控 负载均衡
CPU占用率爆表:高效诊断与解决策略
面对CPU占用率飙升至100%的情况,系统管理员和开发人员需要迅速采取行动以避免性能瓶颈和系统崩溃。本文将提供一系列诊断和解决CPU占用过高问题的实用方法。
60 4
|
2月前
|
监控 负载均衡 算法
CPU占用率爆表:高效诊断与解决CPU 100%问题
在系统运维和软件开发中,CPU占用率达到100%是一个常见的性能瓶颈问题。这种情况可能会导致系统响应缓慢,甚至崩溃。本文将分享如何高效诊断和解决CPU占用率过高的问题,帮助你快速定位并解决问题。
142 5
|
5月前
|
监控 Java Linux
CPU被打满/CPU 100%:高效诊断与优化策略
【8月更文挑战第28天】在日常的工作与学习中,遇到CPU使用率飙升至100%的情况时,往往意味着系统性能受到严重影响,甚至可能导致程序响应缓慢或系统崩溃。本文将围绕这一主题,分享一系列高效诊断与优化CPU使用的技术干货,帮助大家快速定位问题并恢复系统性能。
334 1
|
7月前
|
Prometheus 监控 Cloud Native
grafana展示的CPU利用率与实际不符的问题探究
观察到`mpstat`命令显示单核CPU的`%usr`和`%sys`分别持续在70%和20%,而Grafana监控数据显示较低。问题源于Grafana表达式计算的是CPU时间增量而非利用率。`mpstat`通过`/proc/stat`获取数据并计算CPU利用率,而`node-exporter`直接导出原始数据。调整Grafana表达式以匹配`mpstat`的计算方式后,两者结果一致。解决方案是修正Grafana查询以准确反映CPU占用率。
289 1
grafana展示的CPU利用率与实际不符的问题探究
|
7月前
|
Python
python3获取内存和cpu利用率记录日志文件psutil
python3获取内存和cpu利用率记录日志文件psutil
79 1
|
8月前
|
监控 测试技术
【亮剑】理解CPU负载对服务器稳定性的重要性,并提供了诊断和解决CPU负载过高问题的步骤
【4月更文挑战第30天】本文阐述了理解CPU负载对服务器稳定性的重要性,并提供了诊断和解决CPU负载过高问题的步骤:1) 使用监控工具分析CPU使用率和系统负载;2) 深入排查运行队列、进程占用、系统调用和硬件状态;3) 根据排查结果进行代码优化、调整进程优先级或限制CPU使用率,必要时升级硬件。建议建立监控体系,定期性能测试,并持续优化以保证服务器高效运行。
251 1
|
8月前
|
监控 Shell
Shell脚本监控CPU、内存和硬盘利用率
Shell脚本监控CPU、内存和硬盘利用率
|
8月前
|
网络协议 Linux
【系统DFX】如何诊断占用过多 CPU、内存、IO 等的神秘进程?
【系统DFX】如何诊断占用过多 CPU、内存、IO 等的神秘进程?
174 0
|
监控 Shell Perl
监控CPU、内存和硬盘利用率
监控CPU、内存和硬盘利用率
154 1