围观别人打超级玛丽后,AI自己创造了个新游戏

简介:
本文来自AI新媒体量子位(QbitAI)

AI会打游戏已经不是新鲜事了。微软AI打出吃豆人史上最高分暴雪和DeepMind开发工具包教AI打星际2用神经网络和遗传算法搭建玩Flappy Bird的AI,甚至……连DOTA顶级选手都被AI完爆。AI不断解锁新游戏,还玩得6的飞起。

相比之下,乔治亚理工学院的这项研究有些与众不同,计算机学院的Matthew Guzdial、Boyang Li、Mark O.Reiedl三人想让AI学习制作游戏。曾是“网瘾少年”的AI,也要浪子回头步入游戏制作的正经行业了?

如何创造新游戏?

在论文《Game Engine Learning from Video》中,Guzdial等人描述了一种AI系统,可在围观别人打超级玛丽后重新创造一个游戏引擎。AI系统无法获取代码,但能通过观察像素学习。重建的游戏引擎有些地方看起来不太合理,但总体看还说得过去。

这是世界首个AI创造的游戏,创造过程不易,研究人员遇到了很多困难和限制条件。万事开头难,AI没有从头开始学习过游戏。

对此,研究人员为它提供了两个数据集:一个是游戏中各种小怪的视觉词典,另一个包含了物体位置和移动速度等基本概念,AI通过这些分析它看到的场景。

 超级玛丽的男一和男二:马里奥与板栗仔

依靠这两个数据集,AI将游戏情节逐帧分解,并给所见的东西打上标签,自动寻找行为规则。

 原版洛克人游戏(左)和AI重建的洛克人(右)

在接受外媒The Verge采访时,Guzdial举例解释了AI的学习过程。“解析器分析并收集每一帧画面,比如马里奥的状态、移动速度等,”Guzdial说,“某一帧马里奥踩在板栗仔上,下一帧板栗仔就消失了。根据看到的这个场景AI学习到的新规则,当马里奥踩在板栗仔上且速度为负时,板栗仔消失。”

 无穷马里奥中框架解析过程的可视化

随着训练时间增加,AI将逐步建立起所有小规则,之后将它们记录成一系列逻辑语句并组合起来近似组成游戏引擎。这些规则可以被导出并转换成很多编程语言,我们又可以用这些语言重新创造新的超级玛丽游戏。

论文摘要

智能体需要去预测环境。在这篇论文中,我们提出了一种通过对输入像素的简单搜索学习正向仿真模型的新方法。

我们用游戏超级玛丽初步测试这种方法,超级玛丽代表了没有现实情况这么复杂的物理系统。我们证明了这种方法在预测未来状态上比CNN基线有显著提高,并用学习过的模型训练游戏智能体。最后,我们依据输出模型的准确性和数值来评估算法。

应用于现实生活

目前,这个系统还依赖人类定义在特定游戏中可能发生的事情,因此只能在2D平台上工作,定义3D游戏还需要更多时间以及更先进的机器视觉工具。

Guzdial团队认为,在未来,这项技术不仅可以推导出游戏原理,还有应用在现实生活中的潜力。虽然这比超级玛丽游戏要复杂得多,但并不是一个不可能的想法。“我认为未来的版本可以(分析)有限的现实领域。”Guzdial说。

最后,附上论文地址:

https://www.cc.gatech.edu/~riedl/pubs/ijcai17.pdf

也可在量子位微信公众号(ID:qbitai)会话界面回复“超级玛丽”直接下载这篇论文。

本文作者:安妮
原文发布时间:2017-09-11
相关文章
|
8月前
|
存储 人工智能 运维
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
462 48
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
|
5月前
|
人工智能 自然语言处理 前端开发
DeepSite:基于DeepSeek的开源AI前端开发神器,一键生成游戏/网页代码
DeepSite是基于DeepSeek-V3模型的在线开发工具,无需配置环境即可通过自然语言描述快速生成游戏、网页和应用代码,并支持实时预览效果,显著降低开发门槛。
1142 93
DeepSite:基于DeepSeek的开源AI前端开发神器,一键生成游戏/网页代码
|
6月前
|
人工智能 开发工具 C++
利用通义灵码AI在VS Code中快速开发扫雷游戏:Qwen2.5-Max模型的应用实例
本文介绍了如何利用阿里云通义灵码AI程序员的Qwen2.5-Max模型,在VS Code中一键生成扫雷小游戏。通过安装通义灵码插件并配置模型,输入指令即可自动生成包含游戏逻辑与UI设计的Python代码。生成的游戏支持难度选择,运行稳定无Bug。实践表明,AI工具显著提升开发效率,但人机协作仍是未来趋势。建议开发者积极拥抱新技术,同时不断提升自身技能以适应行业发展需求。
22443 18
利用通义灵码AI在VS Code中快速开发扫雷游戏:Qwen2.5-Max模型的应用实例
|
10月前
|
存储 人工智能 关系型数据库
拥抱Data+AI|解码Data+AI助力游戏日志智能分析
「拥抱Data+AI」系列第2篇:阿里云DMS+AnalyticDB助力游戏日志数据分析与预测
拥抱Data+AI|解码Data+AI助力游戏日志智能分析
|
机器学习/深度学习 人工智能 自然语言处理
了解AIGC:让AI创造内容,改变未来
了解AIGC:让AI创造内容,改变未来
746 2
|
机器学习/深度学习 人工智能 程序员
[AI StoryDiffusion] 创造神奇故事,AI漫画大乱斗!
探索神奇AI项目StoryDiffusion,为您带来一致性连贯的图像和视频创作体验。
[AI StoryDiffusion] 创造神奇故事,AI漫画大乱斗!
|
人工智能 NoSQL 安全
MongoDB观点:让生成式AI成为业务增长的新动能,游戏公司可以这样做
游戏公司采用检索增强生成(RAG)技术,如MongoDB Atlas Vector Search,以提高AI输出的准确性和定制化服务。通过灵活的文档数据库如MongoDB Atlas,企业能更好地集成AI,确保数据安全并抓住创新机遇。ChatGPT标志着AI时代的转折点,游戏公司凭借大量数据优势,有望在这一变革中引领行业发展。
3045 3
|
10月前
|
人工智能 知识图谱
轻松搭建AI版“谁是卧底”游戏,muAgent框架让知识图谱秒变编排引擎,支持复杂推理+在线协同
蚂蚁集团推出muAgent,兼容现有市面各类Agent框架,同时可实现复杂推理、在线协同、人工交互、知识即用四大核心差异技术功能。
228 2
|
10月前
|
存储 人工智能 关系型数据库
拥抱Data+AI|玩家去哪儿了?解码Data+AI如何助力游戏日志智能分析
本文为阿里云瑶池数据库「拥抱Data+AI」系列连载第2篇,基于真实客户案例和最佳实践,探讨如何利用阿里云Data+AI解决方案应对游戏行业挑战,通过AI为游戏行业注入新的活力。文章详细介绍了日志数据的实时接入、高效查询、开源开放及AI场景落地,展示了完整的Data+AI解决方案及其实际应用效果。
|
12月前
|
机器学习/深度学习 人工智能 开发者
谷歌推世界首个AI游戏引擎,2000亿游戏产业恐颠覆!0代码生成游戏,老黄预言成真
【9月更文挑战第22天】谷歌近日推出的AI游戏引擎GameNGen,作为全球首款神经模型驱动的游戏引擎,引发了广泛关注。该引擎使用户无需编写代码即可生成游戏,并实现了与复杂环境的实时交互,显著提升了模拟质量。在单TPU上,GameNGen能以超20帧/秒的速度流畅模拟经典游戏《DOOM》。这项技术不仅简化了游戏开发流程,降低了成本,还为游戏设计带来了更多可能性。然而,它也可能改变游戏产业的商业模式和创意多样性。无论如何,GameNGen标志着游戏开发领域的一次重大革新。
206 2

热门文章

最新文章