一年多以前我脑子一热,想做一款移动应用:一款给学生朋友用的“错题集”应用,可以将错题拍照,记录图像的同时,还能自动分类。比如拍个题目,应用会把它自动分类为”物理/力学/曲线运动”。
当然,这个项目其实不靠谱,市场上已经有太多“搜题”类应用了。但过程很有趣,导致我过了一年多,清理磁盘垃圾时,还舍不得删掉这个项目的“成果”,所以干脆回收利用一下,写篇文章圈圈粉。
源码地址:
https://github.com/caoym/odr
这个项目,核心要解决的问题就是文本分类。所以最初想到的方案是先 OCR 图片转文本,然后分词,再计算 tf-idf,最后用 SVM 分类。但这个方案的问题是:开源 OCR 普遍需要自己训练,且需要做大量的优化、调校和训练,才能在中文识别上有不错的效果,加上图像上还会有公式、几何图形,这些特征也会决定分类,这又提高了对 OCR 的要求。
所以我最终选择的方案是,不使用 OCR,而是直接从图像中寻找有区分性的、鲁棒的特征,作为视觉词汇。之后再通过传统文本分类的方法,训练分类器。
下面将展示整个训练过程,训练的样本来自《2016 B版 5年高考3年模拟:高考理数》,并手工标注了14个分类,每个分类下约50个样本,每个样本为一个题目, 图像为手机拍摄。
样本数据下载地址:
https://github.com/caoym/odr
本文中大部分算法库来自numpy、scipy、opencv、skimage、sklearn。
1. 预处理
为了获取到稳定的特征,我们需要对图像进行预处理,包括调整图像大小,将图像缩放到合适尺寸;旋转图像,或者说调整成水平;二值化,去除色彩信息,产生黑白图像。
1.1. 调整图像大小
调整的目的是为了让图像中文字的尺寸保持大致相同的像素尺寸。这里做了一个简单假设,即:图像基本是一段完整的文本,比如一个段落,或者一页文档,那么不同的图像中,每行文本的字数相差不会很大。
这样我就可以从我所了解的、少得可怜的图像工具库里找到一个工具了:直线拟合。即通过拟合的直线(线段)长度与图像宽度的比例,调整图像的大小。下图为两张不同尺寸图像,经过多次拟合+调整大小后的结果,其中红色算法检查到的直线(线段)。
下面是使用 opencv 直线拟合的代码:
1.2. 图像二值化
二值算法选用skimage.filters.threshold_adaptive(局部自适应阀值的二值化), 试下来针对这种场景,这个算法效果最好,其他算法可以去scikit-image文档了解。下图为全局阀值和局部自适应阀值的效果对比:
文档地址:
http://scikit-image.org/docs/dev/api/skimage.filters.html?highlight=threshold_adaptive#skimage.filters.threshold_adaptive
相关代码如下:
1.3. 旋转图像
从第一步获取到的直线,可以计算出图像的倾斜角度,针对只是轻微倾斜的图像,可以反向旋转进行调整。由于可能存在干扰线条,所以这里取所有直线倾斜角度的中值比平均值更合适。下图展示了图像旋转跳转前后的效果:
相关代码如下:
2. 提取特征
这里的思路是,首先通过形态学处理,可以分割出文本行(的图像),再从文本行中分割出词汇(的图像),然后从”词汇”中提取特征。但这里的需要克服的困难是:
- 很多汉字分左右部,容易被错分,比如你好, 可能被分割成以4块图像:亻、尔、女、子。
- 独立的“字”并不适合于文本分类,还需能学习出词汇。
针对以上问题的解决方案是:
- 将小的图像块进行组合,组合后的新图像块和原来的小块图像一起作为原始图像的特征,如你好将得到10个特征:亻、你、你女,你好,尔、尔女、尔好、女、好、子。
- 得益于上面的方案,词汇信息也被保留了下来,所以第二个问题也就解决了,同时增加了算法的鲁棒性。
下面将介绍具体实现。
2.1. 提取文本行
由于预处理过程中已经将样本的图像尺寸基本调整一致,所以可以比较容易的利用形态学的处理方法,分割出文本行。过程如下:
下图展示了每一步的变化:
接下来可以利用scipy库中的measurements.label方法,标记出不同的的区域,下图展示了标注后的效果,不同区域以不同的灰度表示。
相关代码如下:
接下来根据标记的区域,可从图像中裁剪出每行的数据,如下图:
相关代码如下:
2.2. 提取特征(视觉词汇)
裁剪出单行文本图像后,我们可以将图像中各列的像素的值各自累加,得到一个一纬数组,此数组中的每个局部最小值所在的位置,即为文字间的空隙。如下图所示,其中蓝色线为像素值的累加值,绿色线为其通过高斯滤波平滑后的效果,红色线为最终检测到的分割点。
详细过程见下面代码:
将单行的图像按上述方法获取的分割点进行裁剪,裁剪出单个字符,然后再把相邻的单个字符进行组合,得到最终的特征数据。组合相邻字符是为了使特征中保留词汇信息,同时增加鲁棒性。下图为最终获得的特征信息:
本文中使用的所有样本,最终能提取出约30万个特征。
2.3. 选择特征描述子
选择合适的特征描述子通常需要直觉+运气+不停的尝试(好吧我承认这里没有什么经验可分享),经过几次尝试,最终选中了HOG(方向梯度直方图)描述子。HOG 最让人熟悉的应用领域应该是行人检测了,它很适合描述钢性物体的边缘特征(方向),而印刷字体首先是刚性的,其次其关键信息都包含在边缘的方向上,所以理论上也适合用 HOG 描述。下图为文字图像及其 HOG 描述子的可视化:
更多关于HOG的介绍请点击:
http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_hog.html#sphx-glr-auto-examples-features-detection-plot-hog-py
代码如下:
3. 训练词汇分类器
对词汇进行人工标注工作量太大,所以最好能做到自动分类。我的做法是先聚类,再基于聚类的结果训练分类器。
但有个问题,主流的聚类算法中,除了 K-Means 外,其他都不适合处理大量样本(目前有30万+样本),但 K-Means 在这个场景上聚类效果不佳,高频但不相关的词汇容易被聚成一类,而 DBSCAN 效果很好,但样本数一多,所需时间几何级增长(在我的机器上,超过两万个样本就需要耗费数个小时)。
下图来自sklearn 文档,对各聚类算法做了比较:
为解决这一问题,我的做法是:
1. 先对每类样本下的词汇用 DBSCAN 聚类(约1万个词汇样本),得到一级分类。
2. 聚类后,计算每个一级分类的中心,然后以所有中心为样本再用DBSCAN聚类,得到二级分类。完成后,原一级分类中心的新分类,即代表其原一级分类下所有元素的分类。
聚类的过程为,使用前面提取的HOG特征,先 PCA 降纬,再 DBSCAN 聚类。这里注意,计算二级分类时,PCA应使用全局样本计算。
分类器使用SGDClassifier,原因是其支持分批计算,不至于导致内存不足。
本文中使用的样本,最终得到3000+词汇类型。下图为分类效果,其中每一行为一个分类:
4. 训练文本分类器
有了词汇分类器,我们终于可以识别出每个文本样本上所包含的词汇了(事实上前面步骤的中间过程也能得到每个样本的词汇信息),于是我们可以给每个样本计算一个词袋模型(即用每个词出现的次数表示一篇文本),再通过池袋模型计算TF-IDF模型(即用每个词的 TF*IDF 值表示一篇文本),并最终训练 SVM 分类器。
下面展示了此过程的主要代码:
执行结果如下:
测试集上正确率81%,召回率 78%。个别分类正确率较低,可能是因为样本数太少,另外训练过程大多使用默认参数,若进行细致调校,应该还有提高空间。
5. 结束
此项目完整代码及样本数据均可下载,地址为:
https://github.com/caoym/odr
任何想在实际项目中使用此方法的朋友请注意,以上方法目前只在一个样本库中测试过,在其他样本库中表现如何还不知道,但愿没把你带坑里。
点击左下角“阅读原文”,可解锁更多作者的文章
还可以直接参与讨论~
量子位特约稿件,转载请联系原作者。
— 完 —