对Python装饰器的个人理解方法

简介:

  在自己好好总结并对Python装饰器的执行过程进行分解之前,对于装饰器虽然理解它的基本工作方式,但对于存在复杂参数的装饰器(装饰器和函数本身都有参数),总是会感到很模糊,即使这会弄懂了,下一次也很快忘记,其实本质上还是没有多花时间去搞懂其中的细节问题。

        虽然网络上已经有很多这样的文章,但显然都是别人的思想,因此自己总是记不牢,所以花点时间自己好好整理一下。

        最近在对《Python核心编程》做总结,收获了不少,下面分享一下我自己对于Python装饰器的理解,后面还提供了一个较为复杂的Python装饰器的执行过程的分解,可以参考一下。




1.Python装饰器的出现


         在没有装饰器之前,如果要在类中定义一个静态方法,需要使用下面的方法:

1
2
3
class  MyClass( object ):
     def  staticFoo():
         staticFoo  =  staticmethod (staticFoo)

        即要在该静态方法中加入类似staticmethod()内建函数将该方法转换为静态方法,这显然非常麻烦,而有了装饰器之后,就可以写成下面这样:

1
2
3
4
class  MyClass( object ):
     @ staticmethod
     def  staticFoo():
         pass

        这样就简洁很多了。




2.Python装饰器类型与理解


(1)无参数装饰器    

  • 一个装饰器

        下面的情况:

1
2
3
@f
def  foo():
     pass

        其实就相当于:

1
2
3
def  foo():
     pass
foo  =  g(foo)
  • 多个装饰器

        下面的情况:

1
2
3
4
@g
@f
def  foo():
     pass

        就相当于:

1
2
3
def  foo():
     pass
foo  =  g(f(foo))


(2)含参数装饰器

  • 带有参数的一个装饰器

        下面的情况:

1
2
3
@decomaker (deco_args)
def  foo():
     pass

        就相当于:

1
2
3
def  foo():
     pass
foo  =  decomaker(deco_args)(foo)

        用这样的思想去理解就非常好理解了:decomaker()用deco_args做了些事并返回函数对象,而该函数对象正是以foo作为其参数的装饰器

        下面多个装饰器的例子也是按这样的思想去理解。

  • 带有参数的多个装饰器

        下面的情况:

1
2
3
4
@deco1 (deco_arg)
@deco2 ()
def  foo():
     pass

        就相当于:

1
2
3
def  foo():
     pass
foo  =  deco1(deco_arg)(deco2(foo))




3.Python装饰器执行过程的手动分解


        OK,有了上面的理论基础,理解下面一个较为复杂的装饰器就很容易了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
from  functools  import  wraps
 
def  log(text):
     def  decorator(func):
         @wraps(func)                     #it works like:wraper.__name__ = func.__name__
         def  wrapper( * args,  * * kwargs):
             print  '%s %s():'  %  (text, func.__name__)
             return  func( * args,  * * kwargs)
         return  wrapper
     return  decorator
 
 
@log ( 'Hello' )
def  now(area):
     print  area,  '2016-01-23'
     
 
now( 'Beijing' )
print  'The name of function now() is:' , now.__name__

        执行如下:

1
2
3
4
/ usr / bin / python2. 7  / home / xpleaf / PycharmProjects / decorator_test / dec10.py
Hello now():
Beijing  2016 - 01 - 23
The name of function now()  is : now

对于该程序的执行过程,可以分析如下:

1.先执行log('Hello')函数,此时返回了一个新的函数,只不过其中的text变量被替换为'Hello',所以用来装饰now函数的新的装饰器如下:

1
2
3
4
5
6
def  decorator(func):
     @wraps(func)                     #it works like:wraper.__name__ = func.__name__
     def  wrapper( * args,  * * kwargs):
         print  '%s %s():'  %  ( 'Hello' , func.__name__)
         return  func( * args,  * * kwargs)
     return  wrapper

2.所以此时的now函数,就相当于:

1
now  =  decorator(now)

3.即now就相当于:

1
2
3
4
def  now( * args,  * * kwargs):
     print  '%s %s():'  %  ( 'Hello' , old_now.__name__)
     return  old_now( * args,  * * kwargs)
# 现在的函数名称变为了now而不是wrapper,是因为使用了wraps装饰器

   所以,输出的结果也就非常好理解了。

        关于wraps,它也是一个装饰器,使用它的作用是,被我们用自定义装饰器修改后的函数,它的函数名称,即func.__name__跟原来是一样的,而它的工作原理正如上面所提及的,即:

1
wraper.__name__  =  func.__name__

        也就是说,使用wraps可以不改变原来函数的属性,当然,上面只是简单说明了一下其工作原理,详细的可以参考wraps的源代码。




本文转自 xpleaf 51CTO博客,原文链接:http://blog.51cto.com/xpleaf/1763567,如需转载请自行联系原作者

相关文章
|
21天前
|
开发者 Python
探索Python中的装饰器:从基础到高级应用
本文将带你深入了解Python中的装饰器,这一强大而灵活的工具。我们将一起探讨装饰器的基本概念,它们如何工作,以及如何使用它们来增强函数和类的功能,同时不改变其核心逻辑。通过具体代码示例,我们将展示装饰器的创建和使用,并探索一些高级应用,比如装饰器堆栈和装饰带参数的装饰器。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角,帮助你更有效地使用装饰器来简化和优化你的代码。
|
22天前
|
测试技术 数据安全/隐私保护 开发者
探索Python中的装饰器:从基础到高级应用
装饰器在Python中是一个强大且令人兴奋的功能,它允许开发者在不修改原有函数代码的前提下增加额外的功能。本文将通过具体代码示例,带领读者从装饰器的基础概念入手,逐步深入到高级用法,如带参数的装饰器和装饰器嵌套等。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。
|
22天前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
31 6
|
17天前
|
安全
Python-打印99乘法表的两种方法
本文详细介绍了两种实现99乘法表的方法:使用`while`循环和`for`循环。每种方法都包括了步骤解析、代码演示及优缺点分析。文章旨在帮助编程初学者理解和掌握循环结构的应用,内容通俗易懂,适合编程新手阅读。博主表示欢迎读者反馈,共同进步。
|
10天前
|
缓存 数据安全/隐私保护 Python
python装饰器底层原理
Python装饰器是一个强大的工具,可以在不修改原始函数代码的情况下,动态地增加功能。理解装饰器的底层原理,包括函数是对象、闭包和高阶函数,可以帮助我们更好地使用和编写装饰器。无论是用于日志记录、权限验证还是缓存,装饰器都可以显著提高代码的可维护性和复用性。
23 5
|
21天前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
37 7
|
20天前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
21天前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
44 6
|
20天前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
21天前
|
测试技术 开发者 Python
深入理解Python装饰器:从基础到高级应用
本文旨在为读者提供一个全面的Python装饰器指南,从其基本概念讲起,逐步深入探讨其高级应用。我们将通过实例解析装饰器的工作原理,并展示如何利用它们来增强函数功能、控制程序流程以及实现代码的模块化。无论你是Python初学者还是经验丰富的开发者,本文都将为你提供宝贵的见解和实用的技巧,帮助你更好地掌握这一强大的语言特性。
32 4