利用MRUnit进行MapReduce单元测试

简介:

一、MRUnit简介

    官网地址:https://mrunit.apache.org/

    Apache MRUnit ™ is a Java library that helps developers unit test Apache Hadoop map reduce jobs.

    MRUnit是一个帮助开发者测试map reduce 作业的单元测试库。

二、代码示例

    以maven项目为例,演示如何使用MRUnit进行MR单元测试。

    关于示例的讲解,请参考:https://cwiki.apache.org/confluence/display/MRUNIT/MRUnit+Tutorial

    项目pom.xml文件,重点关注mrunit,mockito-all, junit三个类库的引入,MRUnit是利用mockito+junit针对MR程序进行模拟测试。

MR单元测试类

package mrunit;

import static org.junit.Assert.assertEquals;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import mrunit.SMSCDRMapper.CDRCounter;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mrunit.mapreduce.MapDriver;
import org.apache.hadoop.mrunit.mapreduce.MapReduceDriver;
import org.apache.hadoop.mrunit.mapreduce.ReduceDriver;
import org.junit.Before;
import org.junit.Test;

/**
 * 测试数据说明 CDRID;CDRType;Phone1;Phone2;SMS Status Code
 * 655209;1;796764372490213;804422938115889;6
 * 353415;0;356857119806206;287572231184798;4
 * 835699;1;252280313968413;889717902341635;0
 * 
 */
public class SMSCDRMapperReducerTest {
	Configuration conf = new Configuration();
	MapDriver<LongWritable, Text, Text, IntWritable> mapDriver;
	ReduceDriver<Text, IntWritable, Text, IntWritable> reduceDriver;
	MapReduceDriver<LongWritable, Text, Text, IntWritable, Text, IntWritable> mapReduceDriver;

	@Before
	public void setUp() {

		//测试mapreduce
		SMSCDRMapper mapper = new SMSCDRMapper();
		SMSCDRReducer reducer = new SMSCDRReducer();
		mapDriver = MapDriver.newMapDriver(mapper);
		reduceDriver = ReduceDriver.newReduceDriver(reducer);
		mapReduceDriver = MapReduceDriver.newMapReduceDriver(mapper, reducer);
		
		//测试配置参数
		mapDriver.setConfiguration(conf);
		conf.set("myParameter1", "20");
		conf.set("myParameter2", "23");
		
	}

	@Test
	public void testMapper() throws IOException {
		mapDriver.withInput(new LongWritable(), new Text(
				"655209;1;796764372490213;804422938115889;6"));
		mapDriver.withOutput(new Text("6"), new IntWritable(1));
		mapDriver.runTest();
	}

	@Test
	public void testReducer() throws IOException {
		List<IntWritable> values = new ArrayList<IntWritable>();
		values.add(new IntWritable(1));
		values.add(new IntWritable(1));
		reduceDriver.withInput(new Text("6"), values);
		reduceDriver.withOutput(new Text("6"), new IntWritable(2));
		reduceDriver.runTest();
	}
	
	@Test
	public void testMapperReducer() throws IOException {
		mapReduceDriver.withInput(new LongWritable(), new Text(
				"655209;1;796764372490213;804422938115889;6"));
		mapReduceDriver.withOutput(new Text("6"), new IntWritable(1));
	}

	@Test
	public void testMapperCount() throws IOException {
		mapDriver.withInput(new LongWritable(), new Text(
				"655209;0;796764372490213;804422938115889;6"));
		// mapDriver.withOutput(new Text("6"), new IntWritable(1));
		mapDriver.runTest();
		assertEquals("Expected 1 counter increment", 1, mapDriver.getCounters()
				.findCounter(CDRCounter.NonSMSCDR).getValue());
	}
}

Mapper类

package mrunit;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class SMSCDRMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
	 
	  private Text status = new Text();
	  private final static IntWritable addOne = new IntWritable(1);
	  
	  static enum CDRCounter {
			NonSMSCDR;
		};
	 
	  /**
	   * Returns the SMS status code and its count
	   */
	  protected void map(LongWritable key, Text value, Context context)
	      throws java.io.IOException, InterruptedException {
	 
	    //655209;1;796764372490213;804422938115889;6 is the Sample record format
	    String[] line = value.toString().split(";");
	    // If record is of SMS CDR
	    if (Integer.parseInt(line[1]) == 1) {
	      status.set(line[4]);
	      context.write(status, addOne);
	    }else{
	    	// CDR record is not of type SMS so increment the counter
			context.getCounter(CDRCounter.NonSMSCDR).increment(1);
		}
	  }
	}

Reducer类

package mrunit;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class SMSCDRReducer extends
  Reducer<Text, IntWritable, Text, IntWritable> {
 
  protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws java.io.IOException, InterruptedException {
    int sum = 0;
    for (IntWritable value : values) {
      sum += value.get();
    }
    context.write(key, new IntWritable(sum));
  }
}

项目的pom.xml文件

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
	<modelVersion>4.0.0</modelVersion>

	<groupId>com.cdh</groupId>
	<artifactId>cdh-test</artifactId>
	<version>SNAPSHOT-1.0.0</version>
	<packaging>jar</packaging>

	<name>cdh-test</name>
	<url>http://maven.apache.org</url>

	<properties>
		<hadoop.version>2.0.0-mr1-cdh4.4.0</hadoop.version>
		<hbase.version>0.94.6-cdh4.4.0</hbase.version>
		<project.build.sourceEncoding>utf-8</project.build.sourceEncoding>
		<maven.compiler.encoding>utf-8</maven.compiler.encoding>
	</properties>

	<build>
		<pluginManagement>
			<plugins>
				<plugin>
					<groupId>org.apache.maven.plugins</groupId>
					<artifactId>maven-compiler-plugin</artifactId>
					<version>3.1</version>
					<configuration>
						<encoding>utf-8</encoding>
						<source>1.6</source>
						<target>1.6</target>
					</configuration>
				</plugin>
			</plugins>
		</pluginManagement>

		<plugins>
			<plugin>
				<groupId>org.apache.maven.plugins</groupId>
				<artifactId>maven-shade-plugin</artifactId>
				<version>2.1</version>
				<executions>
					<execution>
						<phase>package</phase>
						<goals>
							<goal>shade</goal>
						</goals>
					</execution>
				</executions>
			</plugin>

			<plugin>
				<groupId>org.apache.maven.plugins</groupId>
				<artifactId>maven-eclipse-plugin</artifactId>
				<version>2.9</version>
				<configuration>
					<buildOutputDirectory>eclipse-classes</buildOutputDirectory>
					<downloadSources>true</downloadSources>
					<downloadJavadocs>false</downloadJavadocs>
				</configuration>
			</plugin>
		</plugins>
	</build>

	<dependencies>
		<dependency>
			<groupId>jdk.tools</groupId>
			<artifactId>jdk.tools</artifactId>
			<version>1.6</version>
			<scope>system</scope>
			<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
		</dependency>
		
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-client</artifactId>
			<version>${hadoop.version}</version>
			<scope>provided</scope>
			<exclusions>
				<exclusion>
					<artifactId>mockito-all</artifactId>
					<groupId>org.mockito</groupId>
				</exclusion>
			</exclusions>
		</dependency>
		<dependency>
			<groupId>org.apache.hadoop</groupId>
			<artifactId>hadoop-mapreduce-client-core</artifactId>
			<version>2.0.0-cdh4.4.0</version>
			<exclusions>
				<exclusion>
					<artifactId>
						jersey-test-framework-grizzly2
					</artifactId>
					<groupId>
						com.sun.jersey.jersey-test-framework
					</groupId>
				</exclusion>
				<exclusion>
					<artifactId>netty</artifactId>
					<groupId>org.jboss.netty</groupId>
				</exclusion>
			</exclusions>
			<scope>provided</scope>
		</dependency>
		<dependency>
			<groupId>org.apache.hbase</groupId>
			<artifactId>hbase</artifactId>
			<version>${hbase.version}</version>
			<scope>provided</scope>
		</dependency>
		<dependency>
			<groupId>com.hadoop.gplcompression</groupId>
			<artifactId>hadoop-lzo-cdh4</artifactId>
			<version>0.4.15-gplextras</version>
		</dependency>

		<dependency>
			<groupId>org.hsqldb</groupId>
			<artifactId>hsqldb</artifactId>
			<version>2.2.9</version>
		</dependency>

		<dependency>
			<groupId>redis.clients</groupId>
			<artifactId>jedis</artifactId>
			<version>2.5.1</version>
		</dependency>
		
		<!-- junit test -->
		<dependency>
			<groupId>org.apache.mrunit</groupId>
			<artifactId>mrunit</artifactId>
			<version>1.1.0</version>
			<classifier>hadoop2</classifier>
			<scope>test</scope>
		</dependency>
		<dependency>
			<groupId>org.mockito</groupId>
			<artifactId>mockito-all</artifactId>
			<version>1.9.5</version>
			<scope>test</scope>
		</dependency>
		<dependency>
			<groupId>junit</groupId>
			<artifactId>junit</artifactId>
			<version>4.10</version>
			<scope>test</scope>
		</dependency>
	</dependencies>

	<repositories>
		<repository>
			<id>cloudera</id>
			<url>https://repository.cloudera.com/artifactory/cloudera-repos</url>
			<releases>
				<enabled>true</enabled>
			</releases>
			<snapshots>
				<enabled>false</enabled>
			</snapshots>
		</repository>
	</repositories>
</project>
相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
分布式计算 资源调度 Java
Hadoop中的MapReduce概述、优缺点、核心思想、编程规范、进程、官方WordCount源码、提交到集群测试、常用数据序列化类型、WordCount案例实操
Hadoop中的MapReduce概述、优缺点、核心思想、编程规范、进程、官方WordCount源码、提交到集群测试、常用数据序列化类型、WordCount案例实操
Hadoop中的MapReduce概述、优缺点、核心思想、编程规范、进程、官方WordCount源码、提交到集群测试、常用数据序列化类型、WordCount案例实操
|
分布式计算 Java 测试技术
|
分布式计算 Hadoop 测试技术
|
分布式计算 Hadoop 测试技术
|
21天前
|
监控 JavaScript 测试技术
postman接口测试工具详解
Postman是一个功能强大且易于使用的API测试工具。通过详细的介绍和实际示例,本文展示了Postman在API测试中的各种应用。无论是简单的请求发送,还是复杂的自动化测试和持续集成,Postman都提供了丰富的功能来满足用户的需求。希望本文能帮助您更好地理解和使用Postman,提高API测试的效率和质量。
75 11
|
2月前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
71 3
|
3月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
87 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
4月前
|
移动开发 JSON Java
Jmeter实现WebSocket协议的接口测试方法
WebSocket协议是HTML5的一种新协议,实现了浏览器与服务器之间的全双工通信。通过简单的握手动作,双方可直接传输数据。其优势包括极小的头部开销和服务器推送功能。使用JMeter进行WebSocket接口和性能测试时,需安装特定插件并配置相关参数,如服务器地址、端口号等,还可通过CSV文件实现参数化,以满足不同测试需求。
285 7
Jmeter实现WebSocket协议的接口测试方法

热门文章

最新文章