显性特征的基本处理方法

简介:

关于显性特征的处理方法可以做这样的类比:不知道大家平时会不会自己做菜,我个人的话基本每周都会做。我们从菜市场买的菜,不经过处理是不能下锅的,因为需要清洗、摘取烂的叶子、切段等操作后才可以下锅。如果把机器学习整个流程比做炒一盘青菜的话,今天要介绍这些方式就有点像菜的前期处理过程。那我们就分类别介绍下,对于一份数据,需要针对特征做哪些处理。

 

1.数据清洗

主要包括两方面,一方面是填充缺失值,因为在机器学习算法的计算过程中会对数据进行各种运算符的计算,需要把一些空值填充,通常会被填充为0或者是对应特征列的均值。第二方面是乱码问题,如果是文本数据,经常会出现编码问题,需要把数据的类型全部处理好,最好是double型的。

 

2.去量纲

因为数据的量纲会影响到某些算法的计算,比如有两个字段数据分别是一个人吃饭用了多少秒、吃了多少斤饭,那一个是时间数据,另一个是重量数据,算法是无法感知这些量纲的影响的,所以需要一些数学手段规避。去量纲常用的方法是归一化和标准化。

 

标准化就是每个特征值减去均值再除以方差,表现的是数据的一个分布情况。

归一化是把数据的分布强制性的限制到01之间,使得向量单位化。

个人认为标准化对于刻画数据的特征效果更好。

 

3.数据平滑

大家可能平时会接触到一些分布极不均匀的数据,比如一个数据区间是[0,256],但是百分之九十以上的数据分布在[0,10][200,256]这两个区间中。对于这样的数据可以通过取对数的方式来处理,让数据的分布更加平滑。或者干脆数据分桶,取一个中间阈值128,小于128的标记为0,大于128的标记为1

 

4.数据去噪

很多时候数据因为采集方式可能出现各别事故,比如有的数据是靠调查问卷采集上来的,但是就有一个人不认真写,瞎写,造成了噪声数据。这种跟事实偏差极大的数据,可以通过正态分布的原理去除,因为可以设想数据的分布大部分是比较平均的,符合正态分布,那与均值偏差极大的部分就很有可能是噪声,需要去除。

 

5.降维

降维的方式很多啦,如果要讲的话需要非常大的篇幅,之前在写书的时候已经写了一遍了~有点懒,在这里简单提下。其实除了PCALDA这两种降维方式以外,逻辑回归中的正则L1也可以理解为一种降维处理。


转自:https://mp.weixin.qq.com/s?__biz=MzA4MDI0NDQyOQ==&mid=2447500068&idx=1&sn=8b555450ef18f943a708c290cbb9eceb&chksm=8bb27886bcc5f1907be3a5a4f083e143d96a0bc20ffbf02a86c99520b22ef0c27907f9835842&mpshare=1&scene=23&srcid=0206Uayr6EAXH36JzWDdp4dY#rd

目录
相关文章
|
7月前
|
算法
【MFAC】基于全格式动态线性化的无模型自适应控制
【MFAC】基于全格式动态线性化的无模型自适应控制
|
1天前
|
机器学习/深度学习 运维 监控
基于特征子空间的高维异常检测:一种高效且可解释的方法
本文探讨了一种替代传统单一检测器的方法,通过构建多个专注于特征子集(子空间)的检测器系统,来提高异常检测的准确性和效率。文章详细介绍了子空间方法在处理高维数据时的优势,包括缓解维度灾难、提高异常检测的可解释性和计算效率。同时,文中还讨论了子空间的选择策略,如基于领域知识、相关性、随机选择等,并介绍了PyOD工具包中实现子空间异常检测的具体方法。通过这些技术,异常检测系统能够更有效地识别数据中的异常记录,尤其是在特征数量众多的情况下。
24 9
基于特征子空间的高维异常检测:一种高效且可解释的方法
|
5月前
|
机器学习/深度学习 移动开发 自然语言处理
【YOLOv8改进 - 注意力机制】ContextAggregation : 上下文聚合模块,捕捉局部和全局上下文,增强特征表示
【YOLOv8改进 - 注意力机制】ContextAggregation : 上下文聚合模块,捕捉局部和全局上下文,增强特征表示
|
编解码 算法 数据可视化
【多重信号分类】超分辨率测向方法——依赖于将观测空间分解为噪声子空间和源/信号子空间的方法具有高分辨率(HR)并产生准确的估计(Matlab代码实现)
【多重信号分类】超分辨率测向方法——依赖于将观测空间分解为噪声子空间和源/信号子空间的方法具有高分辨率(HR)并产生准确的估计(Matlab代码实现)
111 0
|
7月前
|
算法
【MFAC】基于紧格式动态线性化的无模型自适应控制
【MFAC】基于紧格式动态线性化的无模型自适应控制
|
移动开发 人工智能
马尔可夫链预测举例——钢琴销售的存贮策略
马尔可夫链预测举例——钢琴销售的存贮策略
172 0
|
机器学习/深度学习 自然语言处理 算法
【网安AIGC专题11.1】11 Coreset-C 主动学习:特征选择+11种采样方法+CodeBERT、GraphCodeBERT+多分类(问题分类)二元分类(克隆检测)非分类任务(代码总结)
【网安AIGC专题11.1】11 Coreset-C 主动学习:特征选择+11种采样方法+CodeBERT、GraphCodeBERT+多分类(问题分类)二元分类(克隆检测)非分类任务(代码总结)
206 0
|
人工智能 自然语言处理 Python
ChatIE:通过多轮问答问题实现实命名实体识别和关系事件的零样本信息抽取,并在NYT11-HRL等数据集上超过了全监督模型
ChatIE:通过多轮问答问题实现实命名实体识别和关系事件的零样本信息抽取,并在NYT11-HRL等数据集上超过了全监督模型
ChatIE:通过多轮问答问题实现实命名实体识别和关系事件的零样本信息抽取,并在NYT11-HRL等数据集上超过了全监督模型
|
资源调度 算法 关系型数据库
概率图推断之变量消除算法
事实证明,推理是一项颇具挑战的任务。对于很多我们感兴趣的概率,要准确回答这些问题都是NP难题。至关重要的是,推理是否容易处理取决于描述概率的图的结构。尽管有些问题很难解决,我们仍然可以通过近似推理方法获得有用的答案。
265 0
概率图推断之变量消除算法