java8 Lambda Expressions(lamba表达式) 官方样例代码

简介:

     今天仔细的看了java8 Lambda Expressions(lamba表达式) 官方样例代码,详见:http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html. 有兴趣的朋友可以看一下。

     针对官方样例代码进行了部分整理,详细参见下面的源代码,供有兴趣的朋友学习。

     此类从普通实现方式,接口实现方式,匿名类实现方式,lambda表达式实现方式逐步讲解为什么要引入lambda表达式,如果实现lambda表达式。 

     在文章最后,讲解了lambda表达式的捕获变量、类型推断、序列化方面的知识

package lambda;

import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.function.Predicate;

public class RosterTest {

    interface CheckPerson {
        boolean test(Person p);
    }

    // Approach 1: Create Methods that Search for Persons that Match One
    // Characteristic

    public static void printPersonsOlderThan(List<Person> roster, int age) {
        for (Person p : roster) {
            if (p.getAge() >= age) {
                p.printPerson();
            }
        }
    }

    // Approach 2: Create More Generalized Search Methods

    public static void printPersonsWithinAgeRange(
        List<Person> roster, int low, int high) {
        for (Person p : roster) {
            if (low <= p.getAge() && p.getAge() < high) {
                p.printPerson();
            }
        }
    }

    // Approach 3: Specify Search Criteria Code in a Local Class
    // Approach 4: Specify Search Criteria Code in an Anonymous Class
    // Approach 5: Specify Search Criteria Code with a Lambda Expression

    public static void printPersons(
        List<Person> roster, CheckPerson tester) {
        for (Person p : roster) {
            if (tester.test(p)) {
                p.printPerson();
            }
        }
    }

    // Approach 6: Use Standard Functional Interfaces with Lambda Expressions

    public static void printPersonsWithPredicate(
        List<Person> roster, Predicate<Person> tester) {
        for (Person p : roster) {
            if (tester.test(p)) {
                p.printPerson();
            }
        }
    }

    // Approach 7: Use Lambda Expressions Throughout Your Application

    public static void processPersons(
        List<Person> roster,
        Predicate<Person> tester,
        Consumer<Person> block) {
        for (Person p : roster) {
            if (tester.test(p)) {
                block.accept(p);
            }
        }
    }

    // Approach 7, second example

    public static void processPersonsWithFunction(
        List<Person> roster,
        Predicate<Person> tester,
        Function<Person, String> mapper,
        Consumer<String> block) {
        for (Person p : roster) {
            if (tester.test(p)) {
                String data = mapper.apply(p);
                block.accept(data);
            }
        }
    }
    
    // Approach 8: Use Generics More Extensively

    public static <X, Y> void processElements(
        Iterable<X> source,
        Predicate<X> tester,
        Function<X, Y> mapper,
        Consumer<Y> block) {
            for (X p : source) {
                if (tester.test(p)) {
                    Y data = mapper.apply(p);
                    block.accept(data);
                }
            }
    }
    
    class PersonAgeComparator implements Comparator<Person> {
        public int compare(Person a, Person b) {
            return a.getBirthday().compareTo(b.getBirthday());
        }
    }

    public static void main(String... args) {

        List<Person> roster = Person.createRoster();
        Person[] rosterAsArray = roster.toArray(new Person[roster.size()]);
                
        Arrays.sort(rosterAsArray, Person::compareByAge);
        
        for(Person p:rosterAsArray){
        	p.printPerson();
        }
        

        for (Person p : roster) {
            p.printPerson();
        }

        // Approach 1: Create Methods that Search for Persons that Match One
        // Characteristic

        System.out.println("Persons older than 20:");
        printPersonsOlderThan(roster, 20);
        System.out.println();

        // Approach 2: Create More Generalized Search Methods

        System.out.println("Persons between the ages of 14 and 30:");
        printPersonsWithinAgeRange(roster, 14, 30);
        System.out.println();

        // Approach 3: Specify Search Criteria Code in a Local Class

        System.out.println("Persons who are eligible for Selective Service:");

        class CheckPersonEligibleForSelectiveService implements CheckPerson {
           public boolean test(Person p) {
                return p.getGender() == Person.Sex.MALE
                    && p.getAge() >= 18
                    && p.getAge() <= 25;
            }
        }

        printPersons(
            roster, new CheckPersonEligibleForSelectiveService());


        System.out.println();

        // Approach 4: Specify Search Criteria Code in an Anonymous Class

        System.out.println("Persons who are eligible for Selective Service " +
            "(anonymous class):");

        printPersons(
            roster,
            new CheckPerson() {
                public boolean test(Person p) {
                    return p.getGender() == Person.Sex.MALE
                        && p.getAge() >= 18
                        && p.getAge() <= 25;
                }
            }
        );

        System.out.println();

        // Approach 5: Specify Search Criteria Code with a Lambda Expression

        System.out.println("Persons who are eligible for Selective Service " +
            "(lambda expression):");

        printPersons(
            roster,
            (Person p) -> p.getGender() == Person.Sex.MALE
                && p.getAge() >= 18
                && p.getAge() <= 25
        );

        System.out.println();

        // Approach 6: Use Standard Functional Interfaces with Lambda
        // Expressions

        System.out.println("Persons who are eligible for Selective Service " +
            "(with Predicate parameter):");

        printPersonsWithPredicate(
            roster,
            p -> p.getGender() == Person.Sex.MALE
                && p.getAge() >= 18
                && p.getAge() <= 25
        );

        System.out.println();

        // Approach 7: Use Lamba Expressions Throughout Your Application

        System.out.println("Persons who are eligible for Selective Service " +
            "(with Predicate and Consumer parameters):");

        processPersons(
            roster,
            p -> p.getGender() == Person.Sex.MALE
                && p.getAge() >= 18
                && p.getAge() <= 25,
            p -> p.printPerson()
        );

        System.out.println();

        // Approach 7, second example

        System.out.println("Persons who are eligible for Selective Service " +
            "(with Predicate, Function, and Consumer parameters):");

        processPersonsWithFunction(
            roster,
            p -> p.getGender() == Person.Sex.MALE
                && p.getAge() >= 18
                && p.getAge() <= 25,
            p -> p.getEmailAddress(),
            email -> System.out.println(email)
        );

        System.out.println();

        // Approach 8: Use Generics More Extensively

        System.out.println("Persons who are eligible for Selective Service " +
            "(generic version):");

        processElements(
            roster,
            p -> p.getGender() == Person.Sex.MALE
                && p.getAge() >= 18
                && p.getAge() <= 25,
            p -> p.getEmailAddress(),
            email -> System.out.println(email)
        );

        System.out.println();

        // Approach 9: Use Bulk Data Operations That Accept Lambda Expressions
        // as Parameters

        System.out.println("Persons who are eligible for Selective Service " +
            "(with bulk data operations):");

        roster
            .stream()
            .filter(
                p -> p.getGender() == Person.Sex.MALE
                    && p.getAge() >= 18
                    && p.getAge() <= 25)
            .map(p -> p.getEmailAddress())
            .forEach(email -> System.out.println(email));
     }
}

使用到的Person类源代码

package lambda;

import java.time.LocalDate;
import java.util.ArrayList;
import java.util.List;

public class Person {

	String name;
	int age;
	LocalDate birthday;
	Sex gender;
	String emailAddress;

	public enum Sex {
		MALE, FEMALE
	}

	public Person(String name, int age, Sex gender, String emailAddress) {
		this.name = name;
		this.age = age;
		this.gender = gender;
		this.emailAddress = emailAddress;
	}

	public void printPerson() {
		System.out
				.println(name + "," + age + "," + gender + "," + emailAddress);
	}

	public static List<Person> createRoster() {
		List<Person> list = new ArrayList<>();
		list.add(new Person("张三", 12, Sex.MALE, "xx01@126.com"));
		list.add(new Person("李四", 19, Sex.FEMALE, "xx02@126.com"));
		list.add(new Person("王五", 23, Sex.MALE, "xx03@126.com"));
		list.add(new Person("赵六", 36, Sex.FEMALE, "xx04@126.com"));
		list.add(new Person("蔡七", 12, Sex.MALE, "xx05@126.com"));
		return list;
	}

	public static int compareByAge(Person a, Person b) {
		return a.age > b.age ? 1 : a.age == b.age ? 0 : -1;
	}

	public String getName() {
		return name;
	}

	public void setName(String name) {
		this.name = name;
	}

	public LocalDate getBirthday() {
		return birthday;
	}

	public void setBirthday(LocalDate birthday) {
		this.birthday = birthday;
	}

	public Sex getGender() {
		return gender;
	}

	public void setGender(Sex gender) {
		this.gender = gender;
	}

	public String getEmailAddress() {
		return emailAddress;
	}

	public void setEmailAddress(String emailAddress) {
		this.emailAddress = emailAddress;
	}

	public void setAge(int age) {
		this.age = age;
	}

	public int getAge() {
		return age;
	}
}

使用多个参数的lamba表达式样例

package lambda;

public class Calculator {

	interface IntegerMath {
		int operation(int a, int b);
	}

	public int operateBinary(int a, int b, IntegerMath op) {
		return op.operation(a, b);
	}

	public static void main(String... args) {

		Calculator myApp = new Calculator();
		IntegerMath addition = (a, b) -> a + b;
		IntegerMath subtraction = (a, b) -> a - b;
		System.out.println("40 + 2 = " + myApp.operateBinary(40, 2, addition));
		System.out.println("20 - 10 = "
				+ myApp.operateBinary(20, 10, subtraction));
	}
}

lambda表达式变量范围的测试

package lambda;

import java.util.function.Consumer;

public class LambdaScopeTest {

	public int x = 0;

	class FirstLevel {

		public int x = 1;

		void methodInFirstLevel(int x) {

			// The following statement causes the compiler to generate
			// the error "local variables referenced from a lambda expression
			// must be final or effectively final" in statement A:
			//
			// x = 99;

			Consumer<Integer> myConsumer = (y) -> {
				System.out.println("x = " + x); // Statement A
				System.out.println("y = " + y);
				System.out.println("this.x = " + this.x);
				System.out.println("LambdaScopeTest.this.x = "
						+ LambdaScopeTest.this.x);
			};
			
			
			Consumer<Integer> myConsumer2 = new Consumer<Integer>(){
				@Override
				public void accept(Integer x) {
					System.out.println("x = " + x); // Statement A
					System.out.println("x = " + x);
					System.out.println("this.x = " + FirstLevel.this.x);
					System.out.println("LambdaScopeTest.this.x = "
							+ LambdaScopeTest.this.x);				
				}		
			};

			myConsumer.accept(x);
			
			System.out.println("--------------");
			myConsumer2.accept(x);

		}
	}

	public static void main(String... args) {
		LambdaScopeTest st = new LambdaScopeTest();
		LambdaScopeTest.FirstLevel fl = st.new FirstLevel();
		fl.methodInFirstLevel(23);
	}
}
目录
相关文章
|
3天前
|
Java
探索Java世界的奇妙工具——运算符与表达式运算符
探索Java世界的奇妙工具——运算符与表达式运算符
5 0
|
1天前
|
Java
Java的取余如何编写代码
【5月更文挑战第9天】Java的取余如何编写代码
13 5
|
1天前
|
Java 开发者
Java一分钟之-Lambda表达式与函数式接口
【5月更文挑战第12天】Java 8引入的Lambda表达式简化了函数式编程,与函数式接口结合,实现了代码高效编写。本文介绍了Lambda的基本语法,如参数列表、箭头符号和函数体,并展示了如何使用Lambda实现`Runnable`接口。函数式接口仅有一个抽象方法,可与Lambda搭配使用。`@FunctionalInterface`注解用于确保接口具有单一抽象方法。文章还讨论了常见的问题和易错点,如非函数式接口、类型冲突以及Lambda表达式的局部变量可见性,并提供了避免这些问题的策略。通过理解Lambda和函数式接口,开发者能提高代码可读性和效率。
32 4
|
2天前
|
Java API 开发者
Java中Lambda表达式的深入理解与应用
【5月更文挑战第12天】在Java 8之后,Lambda表达式已经成为了Java开发者必备的技能之一。Lambda表达式以其简洁、灵活的特点,大大提高了编程的效率。本文将深入探讨Lambda表达式的基本概念,语法规则,以及在实际开发中的应用,帮助读者更好地理解和使用Lambda表达式。
|
2天前
|
Java 程序员 API
Java 8新特性之Lambda表达式与Stream API的深度解析
【5月更文挑战第12天】本文将深入探讨Java 8中的两个重要新特性:Lambda表达式和Stream API。我们将从基本概念入手,逐步深入到实际应用场景,帮助读者更好地理解和掌握这两个新特性,提高Java编程效率。
22 2
|
3天前
|
算法 安全 Java
Java表达式和规则引擎的比较与考量
Java表达式和规则引擎的比较与考量
|
3天前
|
Java
【JAVA进阶篇教学】第二篇:JDK8中Lambda表达式
【JAVA进阶篇教学】第二篇:JDK8中Lambda表达式
|
2天前
|
Java 调度
Java一分钟之线程池:ExecutorService与Future
【5月更文挑战第12天】Java并发编程中,`ExecutorService`和`Future`是关键组件,简化多线程并提供异步执行能力。`ExecutorService`是线程池接口,用于提交任务到线程池,如`ThreadPoolExecutor`和`ScheduledThreadPoolExecutor`。通过`submit()`提交任务并返回`Future`对象,可检查任务状态、获取结果或取消任务。注意处理`ExecutionException`和避免无限等待。实战示例展示了如何异步执行任务并获取结果。理解这些概念对提升并发性能至关重要。
16 5
|
2天前
|
安全 Java 调度
深入理解Java并发编程:线程安全与性能优化
【5月更文挑战第12天】 在现代软件开发中,多线程编程是提升应用程序性能和响应能力的关键手段之一。特别是在Java语言中,由于其内置的跨平台线程支持,开发者可以轻松地创建和管理线程。然而,随之而来的并发问题也不容小觑。本文将探讨Java并发编程的核心概念,包括线程安全策略、锁机制以及性能优化技巧。通过实例分析与性能比较,我们旨在为读者提供一套既确保线程安全又兼顾性能的编程指导。