笔记—TCP有限状态机分析

简介:

一、TCP状态转换图

TCP涉及连接建立和连接终止的操作可以用状态转换图(state transition diagram)来说明:

wKioL1Zb_J6gV08KAAHRjgX486s686.png

中文图解:

wKiom1ZcA_WBfjVXAALhkWgijbk565.jpg

TCP状态及描述

1
2
3
4
5
6
7
8
9
10
11
CLOSED:无连接是活动的或正在进行
LISTEN:服务器在等待进入呼叫
SYN_RECV:一个连接请求已经到达,等待确认
SYN_SENT:应用已经开始,打开一个连接
ESTABLISHED:正常数据传输状态
FIN_WAIT1:应用说它已经完成
FIN_WAIT2:另一边已同意释放
ITMED_WAIT:等待所有分组死掉
CLOSING:两边同时尝试关闭
TIME_WAIT:另一边已初始化一个释放
LAST_ACK:等待所有分组死掉

    TCP为一个连接定义了11种状态,这些状态可使用netstat显示,它是一个在调试客户/服务器应用时很有用的工具,并且TCP规则规定如何基于当前状态及在该状态下所接收的分节从一个状态转换到另一个状态。举例来说,当某个应用进程在CLOSED状态下执行主动打开时,TCP将发送一个SYN,且新的状态是SYN_SENT。如果这个TCP接着接收到一个带ACK的SYN,它将发送一个ACK,且新的状态是ESTABLISHED。这个最终状态是绝大多数数据传送发生的状态。

    自ESTABLISHED状态引出的两个箭头处理连接的终止。如果某个应用进程在接收到一个FIN之前调用close(主动关闭),那就转换到FIN_WAIT_1状态。但如果某个应用进程在ESTABLISHED状态期间接收到一个FIN(被动关闭),那就转换到CLOSE_WAIT状态。

    我们用粗实线表示通常的客户状态转换,用粗虚线表示通常的服务器状态转换。图中还注明存在两个我们未曾讨论的转换:一个为同时打开(simultaneous open),发生在两端几乎同时发送SYN并且这两个SYN在网络中交错的情形下,另一个为同时关闭(simultaneous close),发生在两端几乎同时发送FIN的情形下。

二、TCP的三次握手建立连接

建立一个TCP连接时会发生下述情形   

    1、客户端发送一个带SYN标志的TCP报文到服务器。这是三次握手过程中的报文1。
    2、服务器端回应客户端的,这是三次握手中的第2个报文,这个报文同时带ACK标志和SYN标志。因此它表示对刚才客户端SYN报文的回应;同时又标志SYN给客户端,询问客户端是否准备好进行数据通讯。
    3、客户必须再次回应服务段一个ACK报文,这是报文段3。

这种交换至少需要3个分组,因此称之为TCP的三路握手(three-way handshake)。

wKiom1Zb-1bhSsrQAAECUogyt_0364.jpg

三、TCP四次握手关闭连接

    由于TCP连接是全双工的,因此每个方向都必须单独进行关闭。这原则是当一方完成它的数据发送任务后就能发送一个FIN来终止这个方向的连接。收到一个 FIN只意味着这一方向上没有数据流动,一个TCP连接在收到一个FIN后仍能发送数据。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。
    1、TCP客户端发送一个FIN,用来关闭客户到服务器的数据传送(报文段4)。
    2、服务器收到这个FIN,它发回一个ACK,确认序号为收到的序号加1(报文段5)。和SYN一样,一个FIN将占用一个序号。
    3、服务器关闭客户端的连接,发送一个FIN给客户端(报文段6)。
    4、客户段发回ACK报文确认,并将确认序号设置为收到序号加1(报文段7)。

wKioL1Zb_mCCYBXFAAEdquxxit4101.jpg

四、TCP 11种状态详细解释

 ● CLOSED: 这个没什么好说的了,表示初始状态。
 ● LISTEN: 这个也是非常容易理解的一个状态,表示服务器端的某个SOCKET处于监听状态,可以接受连接了。
 ● SYN_RCVD: 这个状态表示接受到了SYN报文,在正常情况下,这个状态是服务器端的SOCKET在建立TCP连接时的三次握手会话过程中的一个中间状态,很短暂,基本上用netstat你是很难看到这种状态的,除非你特意写了一个客户端测试程序,故意将三次TCP握手过程中最后一个ACK报文不予发送。因此这种状态时,当收到客户端的ACK报文后,它会进入到ESTABLISHED状态。
 ● SYN_SENT: 这个状态与SYN_RCVD遥想呼应,当客户端SOCKET执行CONNECT连接时,它首先发送SYN报文,因此也随即它会进入到了SYN_SENT状态,并等待服务端的发送三次握手中的第2个报文。SYN_SENT状态表示客户端已发送SYN报文。
 ● ESTABLISHED:这个容易理解了,表示连接已经建立了。
 ● FIN_WAIT_1: 这个状态要好好解释一下,其实FIN_WAIT_1和FIN_WAIT_2状态的真正含义都是表示等待对方的FIN报文。而这两种状态的区别是:FIN_WAIT_1状态实际上是当SOCKET在ESTABLISHED状态时,它想主动关闭连接,向对方发送了FIN报文,此时该SOCKET即进入到FIN_WAIT_1状态。而当对方回应ACK报文后,则进入到FIN_WAIT_2状态,当然在实际的正常情况下,无论对方何种情况下,都应该马上回应ACK报文,所以FIN_WAIT_1状态一般是比较难见到的,而FIN_WAIT_2状态还有时常常可以用netstat看到。
 ● FIN_WAIT_2:上面已经详细解释了这种状态,实际上FIN_WAIT_2状态下的SOCKET,表示半连接,也即有一方要求close连接,但另外还告诉对方,我暂时还有点数据需要传送给你,稍后再关闭连接。
 ● TIME_WAIT: 表示收到了对方的FIN报文,并发送出了ACK报文,就等2MSL后即可回到CLOSED可用状态了。如果FIN_WAIT_1状态下,收到了对方同时带FIN标志和ACK标志的报文时,可以直接进入到TIME_WAIT状态,而无须经过FIN_WAIT_2状态。
 ● CLOSING: 这种状态比较特殊,实际情况中应该是很少见,属于一种比较罕见的例外状态。正常情况下,当你发送FIN报文后,按理来说是应该先收到(或同时收到)对方的ACK报文,再收到对方的FIN报文。但是CLOSING状态表示你发送FIN报文后,并没有收到对方的ACK报文,反而却也收到了对方的FIN报文。什么情况下会出现此种情况呢?其实细想一下,也不难得出结论:那就是如果双方几乎在同时close一个SOCKET的话,那么就出现了双方同时发送FIN报文的情况,也即会出现CLOSING状态,表示双方都正在关闭SOCKET连接。
 ● CLOSE_WAIT: 这种状态的含义其实是表示在等待关闭。怎么理解呢?当对方close一个SOCKET后发送FIN报文给自己,你系统毫无疑问地会回应一个ACK报文给对方,此时则进入到CLOSE_WAIT状态。接下来呢,实际上你真正需要考虑的事情是察看你是否还有数据发送给对方,如果没有的话,那么你也就可以close这个SOCKET,发送FIN报文给对方,也即关闭连接。所以你在CLOSE_WAIT状态下,需要完成的事情是等待你去关闭连接。
 ● LAST_ACK: 这个状态还是比较容易好理解的,它是被动关闭一方在发送FIN报文后,最后等待对方的ACK报文。当收到ACK报文后,也即可以进入到CLOSED可用状态了。

五、问题

1、 为什么建立连接协议是三次握手,而关闭连接却是四次握手呢?
    这是因为服务端在LISTEN状态下的SOCKET当收到SYN报文的建连请求后,它可以把ACK和SYN(ACK起应答作用,而SYN起同步作用)放在一个报文里来发送。但关闭连接时,当收到对方的FIN报文通知时,它仅仅表示对方没有数据发送给你了;但未必你所有的数据都全部发送给对方了,所以你可以未必会马上会关闭SOCKET,也即你可能还需要发送一些数据给对方之后,再发送FIN报文给对方来表示你同意现在可以关闭连接了,所以它这里的ACK报文和FIN报文多数情况下都是分开发送的。
2、 为什么TIME_WAIT状态还需要等2MSL后才能返回到CLOSED状态?
    这是因为虽然双方都同意关闭连接了,而且握手的4个报文也都协调和发送完毕,按理可以直接回到CLOSED状态(就好比从SYN_SEND状态到ESTABLISH状态那样);但是因为我们必须要假想网络是不可靠的,你无法保证你最后发送的ACK报文会一定被对方收到,因此对方处于LAST_ACK状态下的SOCKET可能会因为超时未收到ACK报文,而重发FIN报文,所以这个TIME_WAIT状态的作用就是用来重发可能丢失的ACK报文。








     本文转自 wzlinux 51CTO博客,原文链接:http://blog.51cto.com/wzlinux/1718212,如需转载请自行联系原作者


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
网络协议 C语言
Wireshark lua dissector 对TCP消息包合并分析
Wireshark lua dissector 对TCP消息包合并分析
843 0
|
网络协议
ACK的累加规则-wireshark抓包分析-不包含tcp头部、ip头部、数据链路层头部等。
ACK的累加规则-wireshark抓包分析-不包含tcp头部、ip头部、数据链路层头部等。
ACK的累加规则-wireshark抓包分析-不包含tcp头部、ip头部、数据链路层头部等。
|
网络协议 安全 测试技术
TCP 编程快速入门案例分析 | 学习笔记
快速学习 TCP 编程快速入门案例分析
TCP 编程快速入门案例分析 | 学习笔记
|
网络协议
Wireshark抓包分析/TCP/Http/Https及代理IP的识别
前言   坦白讲,没想好怎样的开头。辗转三年过去了。一切已经变化了许多,一切似乎从没有改变。   前段时间调研了一次代理相关的知识,简单整理一下分享之。如有错误,欢迎指正。 涉及 Proxy IP应用 原理/层级wireshark抓包分析 HTTP head: X-Forwarded-For/ Proxy-Connection/伪造  X-Forwarded-For/ 以及常见的识别手段等几个方面。
2495 0
|
监控 网络协议 Java
netstat统计的tcp连接数与⁄proc⁄pid⁄fd下socket类型fd数量不一致的分析
新blog地址: http://hengyunabc.github.io/netstat-difference-proc-fd-socket-stat/ 最近,线上一个应用,发现socket数缓慢增长,并且不回收,超过警告线之后,被运维监控自动重启了。
2054 0
|
监控 网络协议 NoSQL
不为人知的网络编程(十一):从底层入手,深度分析TCP连接耗时的秘密
TCP的开销到底有多大,能否进行量化。一条TCP连接的建立需要耗时延迟多少,是多少毫秒,还是多少微秒?能不能有一个哪怕是粗略的量化估计?
653 0
不为人知的网络编程(十一):从底层入手,深度分析TCP连接耗时的秘密
|
Web App开发 网络协议 架构师
接口协议之抓包分析 TCP 协议
TCP 协议是在传输层中,一种面向连接的、可靠的、基于字节流的传输层通信协议。 ## 环境准备 对接口测试工具进行分类,可以如下几类: - 网络嗅探工具:tcpdump,wireshark - 代理工具:fiddler,charles,anyproxyburpsuite,mitmproxy - 分析工具:curl,postman,chrome Devtool - ## 抓包分析TCP协
|
Web App开发 网络协议 架构师
接口协议之抓包分析 TCP 协议
TCP 协议是在传输层中,一种面向连接的、可靠的、基于字节流的传输层通信协议。 ## 环境准备 对接口测试工具进行分类,可以如下几类: - 网络嗅探工具:tcpdump,wireshark - 代理工具:fiddler,charles,anyproxyburpsuite,mitmproxy - 分析工具:curl,postman,chrome Devtool - ## 抓包分析TCP协
|
Web App开发 网络协议 测试技术
接口协议之抓包分析 TCP 协议
接口协议之抓包分析 TCP 协议