mysql批量创建数据库 导数据

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介:
  由于近来需要从其它机器拉一堆数据到一台机器上做数据分析,由于涉及到数据库比较,数据也不大不小的,要手工一个一倒腾真是累的半死,于是弄了个脚本
实现功能,根据指定文件下的数据库文件命令格式,
str=1234_`date +%y%m%d%H%M`.gz
echo "开始备份..."`date`
mysqldump -uroot -pxxxxxx--quick --add-drop-table --extended-insert qeedoo | gzip > $str
echo "备份完毕..."`date`
这是相关的数据库备份脚本由于名称的有一个特点即_`date +%y%m%d%H%M`.gz从_开始后面的都相同,前面的话有纯数字的组成也有字母跟数字,数字与字母。
因为涉及到mysql的问题,即mysql不能以纯数字的命令一个数据库,所以操作步骤如下:
一、提取相关数据库备份文件的名称
二、以纯数字为前缀的给他加上后缀com
二、创建数据库导入数据
 
由于以前手工导过数据,但这些数据都没有用了,所以现在需要先批量drop相关库
for i in `cat mysqldata`
do
mysql   -u   root   <<QUERY_SQL
         DROP      DATABASE    IF         EXISTS     $i;
QUIT   
QUERY_SQL
done
从mysqldata文件里取到相关数据库的名,如果存在删掉,记得如果需要保留的数据库需要拿掉不在放在mysqldata文件里,这里面的数据库是show databases 出来的
 
好了进入正题。
 
echo "type  your data path!"
read path
for sqldata in `ls $path`
gunzip $sqldata
do
str=`echo ${sqldata%_*}`  #取_之前的字符串
name=`echo ${sqldata%.*}` #把.gz后缀去掉
echo $str #打印正在处理的数据库 
expr $str + 0 1>/dev/null 2>1 #用_之前的字符串进行expr运算
if [ $? -eq 0 ];then #通过判断返回值确认_之前的字符串是否为纯数字
str1=${str}com #为数字时添加后缀com
else    
str1=${str} 
fi          
 
#进入mysql处理
mysql   -u   root   <<QUERY_SQL  
#如果有密码可以用mysql -uroot -pxxxx <<QUERY_SQL
       DROP      DATABASE    IF         EXISTS     $str1;
        create database   $str1;
        use $str1;
        source $path/$name;
QUIT   
QUERY_SQL
#echo $$   #打印出正在运行的进程号如果不小心进入了死循环直接kill -9 该进程号就可以了当然也可以用ps -ef过滤出来看
done
 
 
记得由于是直接处理字符串的,在进入的path目录里只允许有相关的数据库文件,因为如你在该目录下建了a b之类的该脚本也会例行处理

本文转自 qwjhq 51CTO博客,原文链接:http://blog.51cto.com/bingdian/187613
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
3天前
|
关系型数据库 MySQL 数据库连接
docker拉取MySQL后数据库连接失败解决方案
通过以上方法,可以解决Docker中拉取MySQL镜像后数据库连接失败的常见问题。关键步骤包括确保容器正确启动、配置正确的环境变量、合理设置网络和权限,以及检查主机防火墙设置等。通过逐步排查,可以快速定位并解决连接问题,确保MySQL服务的正常使用。
102 82
|
5天前
|
存储 SQL 关系型数据库
【YashanDB知识库】MySQL迁移至崖山char类型数据自动补空格问题
**简介**:在MySQL迁移到崖山环境时,若字段类型为char(2),而应用存储的数据仅为&#39;0&#39;或&#39;1&#39;,查询时崖山会自动补空格。原因是mysql的sql_mode可能启用了PAD_CHAR_TO_FULL_LENGTH模式,导致保留CHAR类型尾随空格。解决方法是与应用确认数据需求,可将崖山环境中的char类型改为varchar类型以规避补空格问题,适用于所有版本。
|
1天前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
1. 先更新Mysql,再更新Redis,如果更新Redis失败,可能仍然不⼀致 2. 先删除Redis缓存数据,再更新Mysql,再次查询的时候在将数据添加到缓存中 这种⽅案能解决1 ⽅案的问题,但是在⾼并发下性能较低,⽽且仍然会出现数据不⼀致的问题,⽐如线程1删除了 Redis缓存数据,正在更新Mysql,此时另外⼀个查询再查询,那么就会把Mysql中⽼数据⼜查到 Redis中 1. 使用MQ异步同步, 保证数据的最终一致性 我们项目中会根据业务情况 , 使用不同的方案来解决Redis和Mysql的一致性问题 : 1. 对于一些一致性要求不高的场景 , 不做处理例如 : 用户行为数据 ,
|
6天前
|
消息中间件 缓存 NoSQL
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
|
11天前
|
SQL 关系型数据库 MySQL
MySQL生产环境迁移至YashanDB数据库深度体验
这篇文章是作者将 MySQL 生产环境迁移至 YashanDB 数据库的深度体验。介绍了 YashanDB 迁移平台 YMP 的产品相关信息、安装步骤、迁移中遇到的各种兼容问题及解决方案,最后总结了迁移体验,包括工具部署和操作特点,也指出功能有优化空间及暂不支持的部分,期待其不断优化。
|
1月前
|
关系型数据库 MySQL 网络安全
如何排查和解决PHP连接数据库MYSQL失败写锁的问题
通过本文的介绍,您可以系统地了解如何排查和解决PHP连接MySQL数据库失败及写锁问题。通过检查配置、确保服务启动、调整防火墙设置和用户权限,以及识别和解决长时间运行的事务和死锁问题,可以有效地保障应用的稳定运行。
150 25
|
23天前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
45 9
|
1月前
|
监控 关系型数据库 MySQL
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
91 9
|
22天前
|
监控 关系型数据库 MySQL
云数据库:从零到一,构建高可用MySQL集群
在互联网时代,数据成为企业核心资产,传统单机数据库难以满足高并发、高可用需求。云数据库通过弹性扩展、分布式架构等优势解决了这些问题,但也面临数据安全和性能优化挑战。本文介绍了如何从零开始构建高可用MySQL集群,涵盖选择云服务提供商、创建实例、配置高可用架构、数据备份恢复及性能优化等内容,并通过电商平台案例展示了具体应用。
|
1天前
|
存储 SQL 关系型数据库
从 MySQL 到时序数据库 TDengine:Zendure 如何实现高效储能数据管理?
TDengine 助力广州疆海科技有限公司高效完成储能业务的数据分析任务,轻松应对海量功率、电能及输入输出数据的实时统计与分析,并以接近 1 : 20 的数据文件压缩率大幅降低存储成本。此外,taosX 强大的 transform 功能帮助用户完成原始数据的清洗和结构优化,而其零代码迁移能力更实现了历史数据从 TDengine OSS 与 MySQL 到 TDengine 企业版的平滑迁移,全面提升了企业的数据管理效率。本文将详细解读这一实践案例。
12 0