3分钟实操机器学习原理,这里有一个不挑人的模型 | 包教包会

简介:
本文来自AI新媒体量子位(QbitAI)

少年,还在为假期不能工作而苦恼吗?

或者像我一样不能低调展示一下正在从事的“AI”工作?

现在机会来了。

fe98d4e83e5c4ddd79d458ef0d0fbc4092e9f116

 teachable-machine

上图展示的是一个无需敲代码的小实验,名为“teachable-machine”,来自“Google和她的朋友们”。

通过这个小实验,你可以轻松简单地了解机器学习的工作原理,而且手把手教,包教包会,有台带摄像头的电脑就OK。

亲测完成一次实验不超过3分钟,全过程也富有趣味。

全过程

首先,允许程序使用你的电脑摄像头、麦克风和喇叭,主要用途是“输入”;

其次,开始整个机器学习的三大步骤:一是输入,二是学习,三是输出。

1)输入

在摄像头前做某个动作,数量不低于30次,多些角度和场景,然后在“准确值”接近100时开始下一个动作输入,总共三个。

2)学习

在你超过30次的动作捕捉中,机器通过这个“数据集”的学习,掌握了你这个动作代表的意思。

3)输出

三个动作均按要求输入完成后,一一对应的“输出”也会在这个过程中学习完毕。你可以在屏幕前做出任一动作,机器会通过相机输入后给出对应的“意义”。

当然,这个“意义”完全可以自定义,形式也多种多样,比如GIF动图、声音,甚至某段回答。

有什么用?

除了通过这个小实验,简单清晰了解机器学习的原理,其实也能做一些有趣的事情。

比如有人通过这个程序,就能在没有乐器的情况下,编写、弹奏原创音乐;也有人利用这个程序,把机器学习应用到自己的日常起居中。

值得一提的是,这个实验最有意思的地方在于,它允许任何人通过简单的操作,而不是代码来使用机器学习。

当然,这种效果实现背后,也要感谢deeplearn.js的努力,以至于让Web开发人员在浏览器中本地运行机器学习模型。

相关代码也已开源:https://github.com/googlecreativelab/teachable-machine

另外,如果你需要更多这样的机器学习模型,可移步:http://ml4a.github.io/guides/

最后,或许你已经有些迫不及待想要开始了。

这里有一段手把手视频教程,以及马上开黑的地址。



开黑地址:https://teachablemachine.withgoogle.com/

本文作者:李根
原文发布时间: 2017-10-04 
相关文章
|
29天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
13天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
1月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
64 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
22天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
40 12
|
22天前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
55 4
|
29天前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
51 8
|
29天前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
51 6
|
1月前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
1月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。