陈天奇团队发布NNVM编译器,性能优于MXNet,李沐撰文介绍

简介:
本文来自AI新媒体量子位(QbitAI)

亚马逊和华盛顿大学今天合作发布了开源的端到端深度学习编译器NNVM compiler。

先提醒一句,NNVM compiler ≠ NNVM

NNVM是华盛顿大学博士陈天奇等人2016年发布的模块化深度学习系统,今年8月中旬,他们又推出了将深度学习工作负载部署到硬件的端到端IR堆栈TVM,也就是把深度学习模型更简单地放到各种硬件上。

当时,陈天奇把TVM+NNVM描述为“深度学习到各种硬件的完整优化工具链”,而这次推出的NNVM compiler,是一个基于TVM工具链的编译器。

项目作者之一陈天奇在微博上这样介绍这个编译器:

c59ec6cf5f9e369c962aa6e20d36f0012c530ad3

我们今天发布了基于TVM工具链的深度学习编译器NNVM compiler。支持将包括mxnet,pytorch,caffe2, coreml等在内的深度学习模型编译部署到硬件上并提供多级别联合优化。速度更快,部署更加轻量级。 支持包括树莓派,服务器和各种移动式设备和cuda, opencl, metal, javascript以及其它各种后端。 欢迎对于深度学习, 编译原理,高性能计算,硬件加速有兴趣的同学一起加入dmlc推动领导开源项目社区。

NNVM compiler对CoreML的支持,让开发者可以在非iOS设备上部署CoreML模型。

AI开发界的挑战

AWS AI首席科学家李沐(MXNet作者)在亚马逊博客撰文介绍称,推出这个编译器,是为了应对深度学习框架多样化为AI开发界带来的三个挑战:

一、

对于算法的开发者来说,由于各AI框架的前端交互和后端实现之间都存在很多区别,换框架很麻烦,而开发和交付过程中可能会用到的框架不止一个。

比如说有的亚马逊AWS云服务用户,为了获得EC2上的加速性能,会想要把Caffe模型部署到MXNet上。

为了应对这个问题,之前Facebook和微软也联合发布了模型间转换工具ONNX。

二、

框架的开发者需要维护多个后端,来保证自己的框架能适用于从手机芯片到数据中心GPU的各种硬件。

比如说MXNet,要支持英伟达GPU的cuDNN,还要支持英特尔CPU的MKLML。

三、

芯片供应商的角度来看,他们每新开发一款芯片都需要支持多个AI框架,每个框架表示和执行工作负载的方式都不一样,所以,就连卷积这样一个运算,都需要用不同的方式来定义。

支持多个框架,就代表要完成巨大的工作量。

通过将框架中的深度学习模型直接部署到硬件,NNVM compiler自然也就解决了这些问题。

结构

NNVM compiler可以将前端框架中的工作负载直接编译到硬件后端,能在高层图中间表示(IR)中表示和优化普通的深度学习工作负载,也能为不同的硬件后端转换计算图、最小化内存占用、优化数据分布、融合计算模式。

编译器的典型工作流如下图所示:

fd006e5633ef6b165bd69acde69aa1dc7fa597b6

这个编译器基于此前发布的TVM堆栈中的两个组件:NNVM用于计算图,TVM用于张量运算。

其中,NNVM的目标是将不同框架的工作负载表示为标准化计算图,然后将这些高级图转换为执行图。

TVM提供了一种独立于硬件的特定域语言,以简化张量索引层次中的运算符实现。另外,TVM还支持多线程、平铺、缓存等。

对框架和硬件的支持

编译器中的NNVM模块,支持下图所示的深度学习框架:

f33444f423ef54b9dbb039f9dc2d800353037d7a

具体来说,MXNet的计算图能直接转换成NNVM图,对Keras计算图的直接支持也正在开发中。

同时,NNVM compiler还支持其他模型格式,比如说微软和Facebook前不久推出的ONNX,以及苹果CoreML。

通过支持ONNX,NNVM compiler支持Caffe2、PyTorch和CNTK框架;通过支持CoreML,这个编译器支持Caffe和Keras。

而编译器中的TVM模块,目前附带多个编码生成器,支持多种后端硬件,其中包括为X86和ARM架构的CPU生成LLVM IR,为各种GPU输出CUDA、OpenCL和Metal kernel。

性能

b907af378ab7b7d795a8756ee1e77053c0a20776

NNVM compiler联合使用图级和张量级优化以获得最佳性能。常规的深度学习框架会将图优化与部署runtime进行打包,而NNVM编译器将优化与实际部署运行时分离。

采用这种方法,编译的模块只需要依赖于最小的TVM runtime,当部署在Raspberry Pi或移动设备上时,只占用大约300KB。

陈天奇团队对NNVM compiler的性能进行了基准测试,并与MXNet进行了比较。这个测试基于两种典型的硬件配置:树莓派上的ARM CPU和AWS上的Nvidia GPU。

Nvidia GPU

GPU的基准和时间表由Leyuan Wang(AWS/UCDavis)和Yuwei Hu(图森)提供。他们在Nvidia K80上对NNVM编译器和MXNet进行了比较,以CUDA8和CuDNN7作为后端。这是一个非常强的基线,因为MXNet开启了从CuDNN中选择最佳内核的自动调整功能。另外,他们还使用了MXNet中优化深度内核来优化MobileNet工作负载。

a97245f5a3f81c106989d521533a5aea433dbf75

如图所见,NNVM编译器生成的代码在K80上优于MXNet。这些改进源于图和内核级别的优化。值得注意的是,NNVM编译器自己升恒所有的优化GPU内核,而不需要依赖诸如CuDNN这样的外部库。

树莓派3b

树莓派编译堆栈由Ziheng Jiang(AWS/FDU)提供。他们使用OpenBLAS和NNPack对NNVM和MXNet进行了比较,尝试不同的设置来获得MXNet的最佳表现,例如为3×3卷积在NNPack中开启Winograd卷积,启动多线程,并禁用了额外的调度程序(所有的线程都被NNPack使用)。

7c92481eda93427c9c954d1c3b1a55d22f96cc84

结果如上图所示,由NNVM编译器生成的代码在ResNet18上速度快两倍。MobileNet上的差距,主要是因为现有CPU DNN库中缺乏深度卷积。NNVM编译器受益于直接生成高效的ARM代码。

开发团队

NNVM编译器的GitHub地址:

https://github.com/dmlc/nnvm

开发这个项目的依然是TVM堆栈团队,包括华盛顿大学艾伦计算机学院的陈天奇、Thierry Moreau、Haichen Shen、Luis Ceze、Carlos Guestrin和Arvind Krishnamurthy,以及亚马逊AWS AI团队的Ziheng Jiang。

另外,在TVM博客最后还鸣谢了一群社区贡献者:

在这里特别感谢Yuwen Hu(图森)、Leyuan Wang(AWS/UCDavis)、Joshua Z. Zhang(AWS)以及Xingjian Shi(HKUST)的早期贡献。我们也要感谢所有的TVM堆栈贡献者。

本文作者:夏乙 若朴
原文发布时间:2017-10-07
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
陈天奇最新研究:递归模型编译器CORTEX,深度学习推理延迟降低了14倍!
华人AI新星,CMU助理教授陈天奇团队发布最新研究成果「CORTEX」,能够有效编译递归型深度学习模型,在推理过程上能降低14倍延迟!
374 0
陈天奇最新研究:递归模型编译器CORTEX,深度学习推理延迟降低了14倍!
陈天奇:在深度学习框架之间共享张量——内存张量结构DLPack的PythonAPI来了
DLPack是一种开放的内存张量结构,用于在框架之间共享张量,近日,开发者陈天奇更新社交媒体详细介绍了为DLPack添加PythonAPI、语义和实现细节的内容。
241 0
陈天奇:在深度学习框架之间共享张量——内存张量结构DLPack的PythonAPI来了
陈天奇团队新研究:自动优化深度学习工作负载
华盛顿大学计算机系博士生陈天奇、以及上海交通大学和复旦大学的研究团队提出一个基于学习的框架,以优化用于深度学习工作负载的张量程序。该研究使用基于机器学习的方法来自动优化张量运算核心并编译AI工作负载,从而可以将最优的性能部署到所有硬件。
6809 0
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习利用多层神经网络实现人工智能,计算机视觉是其重要应用之一。图像分类通过卷积神经网络(CNN)判断图片类别,如“猫”或“狗”。目标检测不仅识别物体,还确定其位置,R-CNN系列模型逐步优化检测速度与精度。语义分割对图像每个像素分类,FCN开创像素级分类范式,DeepLab等进一步提升细节表现。实例分割结合目标检测与语义分割,Mask R-CNN实现精准实例区分。关键点检测用于人体姿态估计、人脸特征识别等,OpenPose和HRNet等技术推动该领域发展。这些方法在效率与准确性上不断进步,广泛应用于实际场景。
260 64
计算机视觉五大技术——深度学习在图像处理中的应用
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
160 22
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
331 6

量子位

+ 订阅
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等