实验:EIGRP浮动汇总路由

简介:
实验拓扑:
接口连接:
Router1 S0/0 <----> Router2 S0/0 
Router2 S0/1 <----> Router3 S0/0 
Router1 S0/1 <----> Router4 S0/0 
Router3 S0/1 <----> Router4 S0/1 
VPCS V0/1 <----> Router1 E1/0 
VPCS V0/2 <----> Router3 E1/0 
实验原理:
在R1\R2\R3\R4上均运行EIGRP路由协议。R4通过S0/1向R3通告一条0.0.0.0 0.0.0.0的汇总路由,并将这条浮动路由的管理距离设置为250,于是在网络连通的情况下R3上到达200.1.1.0/24网段的路由经过R2,而在R2与R3链路故障的时候,通过R3前往200.1.1.0/24的数据包会通过R4(R3拓扑表中,默认路由由A变为P)
 
关键配置:
R1:
interface Serial0/0
 ip address 192.168.1.1 255.255.255.0
 serial restart-delay 0
!
interface Serial0/1
 ip address 192.168.3.1 255.255.255.0
 serial restart-delay 0
!
interface Ethernet1/0
 ip address 200.1.1.254 255.255.255.0
 half-duplex
!
router eigrp 100
 network 192.168.1.0
 network 192.168.3.0
 network 200.1.1.0
 no auto-summary
 
R2、R3略,参照R1进行接口IP和路由协议的配置
重点看下R4的配置
 
R4:
interface Serial0/0
 ip address 192.168.3.2 255.255.255.0
 serial restart-delay 0
!
interface Serial0/1
 ip address 192.168.4.1 255.255.255.0
 ip summary-address eigrp 100 0.0.0.0 0.0.0.0 250(向R3通过默认路由,管理距离高于EIGRP默认值)!
router eigrp 100
 network 192.168.3.0
 network 192.168.4.0
 auto-summary
 
查看结果:
1.R2和R3之间链路正常时
 a) R3的路由表:
R3#sh ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area 
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is 192.168.4.1 to network 0.0.0.0
D    200.1.1.0/24 [90/2707456] via 192.168.2.1, 00:00:02, Serial0/0
C    200.1.2.0/24 is directly connected, Ethernet1/0
C    192.168.4.0/24 is directly connected, Serial0/1
D    192.168.1.0/24 [90/2681856] via 192.168.2.1, 00:00:02, Serial0/0
C    192.168.2.0/24 is directly connected, Serial0/0
D    192.168.3.0/24 [90/3193856] via 192.168.2.1, 00:00:02, Serial0/0
D*   0.0.0.0/0 [90/2681856] via 192.168.4.1, 00:00:00, Serial0/1
b)R3的拓扑表:
R3#sh ip eigrp topology 
IP-EIGRP Topology Table for AS(100)/ID(200.1.2.254)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - reply Status, s - sia Status
A 0.0.0.0/0, 1 successors, FD is Inaccessible
    1 replies, active 00:00:00, query-origin: Successor Origin
      Remaining replies:
         via 192.168.2.1, r, Serial0/0
P 192.168.1.0/24, 1 successors, FD is 2681856
         via 192.168.2.1 (2681856/2169856), Serial0/0
P 192.168.2.0/24, 1 successors, FD is 2169856
         via Connected, Serial0/0
P 192.168.3.0/24, 1 successors, FD is 3193856
         via 192.168.2.1 (3193856/2681856), Serial0/0
P 192.168.4.0/24, 1 successors, FD is 2169856
         via Connected, Serial0/1
P 200.1.1.0/24, 1 successors, FD is 2707456
         via 192.168.2.1 (2707456/2195456), Serial0/0
P 200.1.2.0/24, 1 successors, FD is 281600
         via Connected, Ethernet1/0
 
2.R2的S0/1设置为DOWN,观察R3路由表和拓扑表
a)R3路由表:
R3#sh ip route 
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area 
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route
Gateway of last resort is 192.168.4.1 to network 0.0.0.0
C    200.1.2.0/24 is directly connected, Ethernet1/0
C    192.168.4.0/24 is directly connected, Serial0/1
C    192.168.2.0/24 is directly connected, Serial0/0
D*   0.0.0.0/0 [90/2681856] via 192.168.4.1, 00:00:05, Serial0/1
b)R3的拓扑表:
R3#sh ip eigrp topology 
IP-EIGRP Topology Table for AS(100)/ID(200.1.2.254)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - reply Status, s - sia Status
P 0.0.0.0/0, 1 successors, FD is 2681856
         via 192.168.4.1 (2681856/2169856), Serial0/1
P 192.168.4.0/24, 1 successors, FD is 2169856
         via Connected, Serial0/1
P 200.1.2.0/24, 1 successors, FD is 281600
         via Connected, Ethernet1/0
该实验说明,当R2和R3链路正常是,通过R3去往PC1的数据包不通过R4,只有当R2、R3间链路出现故障,默认路由才启用。




本文转自 tiger506 51CTO博客,原文链接:http://blog.51cto.com/tiger506/168707,如需转载请自行联系原作者

目录
相关文章
|
7月前
|
网络协议 定位技术 网络架构
路由协议——直连路由、静态路由、缺省路由、路由优先级和路由度量、路由冗余和备份(浮动静态路由)
路由协议——直连路由、静态路由、缺省路由、路由优先级和路由度量、路由冗余和备份(浮动静态路由)
508 2
|
1月前
|
网络协议 网络架构
|
4月前
|
网络协议 网络架构
|
7月前
|
网络虚拟化 网络架构
单臂路由实验
单臂路由实验
|
7月前
|
负载均衡 网络协议 数据库
ENSP中RIP动态路由协议(原理和配置)
`RIP (Routing Information Protocol)` 是一种距离矢量动态路由协议,用于路由器之间交换网络可达性信息。它基于跳数作为度量标准来衡量到达目的地的距离,最常用于小型网络。RIP有以下关键特点: 1. **实现网络互通**:路由器通过RIP学习彼此的路由信息,构建完整的路由表。 2. **动态更新**:路由器周期性广播其路由表,以应对网络拓扑变化。 3. **负载均衡**:RIPv2支持负载均衡,可根据链路负载选择最佳路径。 4. **简单配置**:适用于小型网络,配置和管理相对简单。 5. **成本效益**:作为免费协议,降低了网络部署和维护成本。
551 0
ENSP中RIP动态路由协议(原理和配置)
|
网络协议 网络架构
浮动路由配置实验
浮动路由配置实验
浮动路由配置实验
|
网络协议 网络虚拟化 网络架构
eNSP | Vlan划分及其OSPF动态路由
eNSP | Vlan划分及其OSPF动态路由
eNSP | Vlan划分及其OSPF动态路由