JPDA 架构研究7 - Agent利用环境指针访问VM(线程组管理篇)

简介:

引入:

上篇文章中我们讨论了Agent利用环境指针访问VM的线程操作,这里讨论线程组操作。


分类3:线程组操作

a.GetTopThreadGroups.让Agent获取VM中的所有全局的线程组。

jvmtiError
GetTopThreadGroups(jvmtiEnv* env,
            jint* group_count_ptr,
            jthreadGroup** groups_ptr)

函数会返回全局的线程组的数量和线程组的列表。


b.GetThreadGroupInfo。获取某个线程组的信息。

typedef struct {
    jthreadGroup parent;
    char* name;
    jint max_priority;
    jboolean is_daemon;
} jvmtiThreadGroupInfo;
jvmtiError
GetThreadGroupInfo(jvmtiEnv* env,
            jthreadGroup group,
            jvmtiThreadGroupInfo* info_ptr)

从这里可以看出,它会包含线程组的父亲,线程组名字(UTF-8格式),最大优先级,是否守护线程组等信息。


c.GetThreadGroupChildren.获取某指定线程组的孩子们。

jvmtiError
GetThreadGroupChildren(jvmtiEnv* env,
            jthreadGroup group,
            jint* thread_count_ptr,
            jthread** threads_ptr,
            jint* group_count_ptr,
            jthreadGroup** groups_ptr)

因为线程组和线程的关系也遵守设计模式中的Composite Design Pattern.所以某个线程组的孩子可以是子线程组,也可以是一些活着的子线程。所以这里可以看出,它会返回子线程的数量,子线程列表,子线程组数量,子线程组列表。





本文转自 charles_wang888 51CTO博客,原文链接:http://blog.51cto.com/supercharles888/1587695,如需转载请自行联系原作者
目录
相关文章
|
10月前
|
机器学习/深度学习 安全 算法
十大主流联邦学习框架:技术特性、架构分析与对比研究
联邦学习(FL)是保障数据隐私的分布式模型训练关键技术。业界开发了多种开源和商业框架,如TensorFlow Federated、PySyft、NVFlare、FATE、Flower等,支持模型训练、数据安全、通信协议等功能。这些框架在灵活性、易用性、安全性和扩展性方面各有特色,适用于不同应用场景。选择合适的框架需综合考虑开源与商业、数据分区支持、安全性、易用性和技术生态集成等因素。联邦学习已在医疗、金融等领域广泛应用,选择适配具体需求的框架对实现最优模型性能至关重要。
1821 79
十大主流联邦学习框架:技术特性、架构分析与对比研究
|
7月前
|
机器学习/深度学习 传感器 自然语言处理
基于Transformer架构的时间序列数据去噪技术研究
本文介绍了一种基于Transformer架构的时间序列去噪模型。通过生成合成数据训练,模型在不同噪声条件下展现出强去噪能力。文章详细解析了Transformer的输入嵌入、位置编码、自注意力机制及前馈网络等关键组件,并分析实验结果与注意力权重分布。研究为特定任务的模型优化和专业去噪模型开发奠定了基础。
437 14
基于Transformer架构的时间序列数据去噪技术研究
|
5月前
|
运维 监控 数据可视化
一文详解:工业软件“低代码开发平台”技术架构研究与分析
本文围绕工业软件低代码开发平台的机遇与挑战,提出基于自动化引擎的技术架构,由工具链、引擎库、模型库、组件库、工业数据网关和应用门户组成。文章分析了其在快速开发、传统系统升级中的应用模式及价值,如缩短创新周期、降低试错成本、解决资源缺乏和提升创新可复制性,为我国工业软件产业发展提供参考和支持。
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与最佳实践
在微服务架构中,数据库访问的效率直接影响到系统的性能和可扩展性。本文探讨了优化微服务架构中数据库访问的策略与最佳实践,包括数据分片、缓存策略、异步处理和服务间通信优化。通过具体的技术方案和实例分析,提供了一系列实用的建议,以帮助开发团队提升微服务系统的响应速度和稳定性。
|
8月前
|
Java 调度
Java线程池的实现架构
线程池是一种用于管理多线程的池化技术,通过复用线程减少创建和销毁线程的开销。Java中的线程池架构包括`Executor`、`ExecutorService`、`ScheduledExecutorService`等接口,以及`ThreadPoolExecutor`和`ScheduledThreadPoolExecutor`两个核心实现类。`Executors`工厂类提供了便捷的线程池创建方法。线程池不仅简化了多线程编程,还能避免线程过多导致的资源消耗和切换开销。本文从使用示例入手,剖析了线程池的实现原理及其内部架构,重点分析调度线程池的实现机制。
|
8月前
|
Java 调度
Java线程池实现架构
Java线程池实现架构
|
11月前
|
存储 JavaScript 开发工具
基于HarmonyOS 5.0(NEXT)与SpringCloud架构的跨平台应用开发与服务集成研究【实战】
本次的.HarmonyOS Next ,ArkTS语言,HarmonyOS的元服务和DevEco Studio 开发工具,为开发者提供了构建现代化、轻量化、高性能应用的便捷方式。这些技术和工具将帮助开发者更好地适应未来的智能设备和服务提供方式。
基于HarmonyOS 5.0(NEXT)与SpringCloud架构的跨平台应用开发与服务集成研究【实战】
|
11月前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
342 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
人工智能 网络协议 Shell
内网穿透实现公网访问自己搭建的Ollma架构的AI服务器
内网穿透实现公网访问自己搭建的Ollma架构的AI服务器
607 2

热门文章

最新文章