云场景实践研究第11期:美柚

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 美柚在2014年接触阿里云之后,逐渐采用阿里云的产品,从最开始接触公测的ADS到现在使用的ECS、MaxCompute、RDS、分析型数据库、TAE、阿里云云盾等等,目前美柚形成了混合云的模式。目前,美柚的整个官网全部部署在阿里云上,同时美柚还基于阿里云建立了电商柚子街,并且还基于阿里云搭建了BI系统。

更多云场景实践研究案例,点击这里:【云场景实践研究合集】联合不是简单的加法,而是无限的生态,谁会是下一个独角兽

在2013年美柚成立之初,架构采用自建机房的传统开发方式,当时托管机房内服务器数量达300台之多,在2014年美柚接触阿里云之后,逐渐采用阿里云的产品,从最开始接触公测的ADS到现在使用的ECS、MaxCompute、RDS、分析型数据库、TAE、阿里云云盾等等,目前美柚形成了混合云的模式。目前,美柚的整个官网全部部署在阿里云上,同时美柚还基于阿里云建立了电商柚子街,并且还基于阿里云搭建了BI系统。美柚为了缓解自建大数据集群的规模较小的情况,积极采用阿里云大数据平台对数据进行分析和处理计算。

“通过阿里云提供的丰富的开发套件和算法库,大大缩短了美柚从想法到产品的时间。”

——黄益聪

美柚技术总监


采用的阿里云产品

  • 阿里云云服务器 ECS
  • 阿里云云数据库 RDS
  • 阿里云大数据计算服务 MaxCompute
  • 阿里云分析型数据库 AnalyticDB
  • 阿里云分析型数据库服务 ADS
  • 阿里云DDoS高防IP (云盾)

为什么使用阿里云

为了缓解自建大数据集群的规模较小的情况,美柚需要采用阿里云大数据平台对数据进行分析和处理计算。

随着美柚不断发展,系统逐渐受到一些恶意攻击,包括恶意抓取、DDoS攻击等,因此API实时监控显得不可或缺,这需要借助阿里云盾DDoS高防IP抵御部分网络攻击,并进行流量清洗和分析。


关于 美柚

美柚通过社区+工具+电商为广大女性提供一站式综合服务,满足女性群体交流沟通、知识获取、购物三大需求。《互联网周刊》发布2015年度APP分类排行榜,美柚位居女性APP第一位。同年12月,在清科集团、投资界主办的2015中国最具投资价值企业50强评选中,美柚凭借在女性市场的卓越表现从3000多家报名企业中脱颖而出,获评“2015中国最具投资价值企业50强”,截止到2015年7月,美柚用户超过1亿,日活跃用户500万。


为什么选择阿里云?

美柚基于阿里云和自建机房的混合云架构

在2013年美柚成立之初,行业内云生态圈并不是十分完善。因此,最初的架构采用自建机房的传统开发方式,至今为止,托管机房内服务器数量达300台之多;同时,为了迎合大数据发展的趋势,美柚也搭建了自己的Hadoop、Spark、Storm、Kylin等对应的大数据处理平台;在数据库方面,采用MySQL、MogoDB、Redis、CounchBase等主流数据库。在2014年,接触阿里云之后,逐渐采用阿里云的产品,从最开始接触公测的ADS到现在使用的ECS、MaxCompute、RDS、分析型数据库、TAE、阿里云云盾等等,目前美柚形成了混合云的模式,既有一定规模的托管机房,也积极的使用阿里云的产品。

ed0091d23bcbc9c5a20806d6bd12ad99d6249e3d

美柚混合云的服务分布

美柚混合云架构的云上设施和云下设施分工各不相同。因为最初的架构是在托管机房上建立的,所以现在主要的App接口、社区、广告系统、用户中心、柚币中心以及包括App和社区的运营后台都部署在托管机房;同时搜索、推送、实时监控、反垃圾等最初建立起的基础服务也是部署在托管机房里面的;此外,托管机房内也有一些如Spark、Hadoop等大数据处理平台,但集群规模相对较小。

目前,美柚的整个官网全部部署在阿里云上,同时美柚电商柚子街也是基于阿里云建立的,包括整个电商平台和运营后台、招商系统。此外,还基于阿里云搭建了BI系统。最后,为了缓解自建大数据集群的规模较小的情况,积极采用阿里云大数据平台对数据进行分析和处理计算。


美柚混合云之间的数据交互

a821ec4791489cf176d6327d82e741573b58d301

混合云之间的数据交互

上图是托管机房和阿里云之间的数据流通情况,可以看到每天会有一部分数据包括业务日志、数据库的增量数据会从托管机房流向阿里云。数据流向阿里云的ODPS后,在ODPS内进行一些数据计算和算法模型的训练。然后再将计算的结果导入ADSRDS中,其中导入的ADS支持BI系统,并且ADS能够多值列查询和毫秒级的实时响应,有利于生成BI报表;另一部分数据存入RDS中,不仅降低了存储成本,同时也提高了数据的安全性。经阿里云计算和处理后,部分数据还需要回流到托管机房的数据库和数仓内,回流的目的是因为现在还有一些比较重要的服务还在托管机房内部署,并且从机房调用可以极好的缩短调用的延迟。每日从自建机房流向阿里云的数据量相当大,对于一些重要的数据如用户数据,在自有机房和阿里云上进行了双活,首先从业务数据库先同步到自建机房的HBase集群中做一个备份,然后在阿里云上也做了一个备份,这些数据以一小时为间隔进行同步,以此确保重要数据的安全。
从机房到阿里云上采用逐类更新的方式,准实时的数据依旧在托管机房处理;对一些大数据计算和实时性要求不是很高的数据将其流向阿里云,借助阿里云超强的计算能力和超大的集群规模进行计算处理,同时这些数据会在T+1日进行更新。


API实时监控

523d6dd8b25417f0e0d071e80bb075a11a233c74

美柚基于阿里云的API实时监控

随着美柚不断发展,系统逐渐受到一些恶意攻击,包括恶意抓取、DDoS攻击等,因此API实时监控显得不可或缺。目前通过使用阿里云盾DDoS高防IP,有效地抵御部分网络攻击,并可以进行流量清洗和分析。在此基础上,美柚还自主研发了API实时监控系统,监控系统的数据是来自托管机房的实时处理计算平台,通过监控系统可以实时观察服务端响应时间、处理数目以及各个接口的调用分布。通过全链路实时监控服务质量,保障用户极致体验。同时作为一个移动互联网公司,美柚将API实时监控从传统的服务部署转向移动化,在移动端Android/IOS进行实时业务监控与预警,使得开发和运维在任一地点任意时间都能对实时业务了如指掌,可以第一时间发现问题所在。


大数据智能挖掘

ab6a4109ce4792d48c9ec594afbdbaa4f5e88835

大数据助力社区电商生态

上图是美柚大数据智能挖掘的大致框架,作为一个社区电商一体化的公司,美柚利用大数据挖掘打通整个生态系统。以用户为中心,通过对用户的深入分析,形成用户画像,深入理解用户需求,个性化的改造社区使其更有温度、更具黏性。同时基于对用户的理解,使得社群电商能够进行精准化的推荐,深入了解用户的需求。基于对女性用户的理解,对用户做了多维度的划分,品牌商和广告主精准的投放广告,可得到更高的收益。
美柚采用两套系统存储用户数据,在阿里云上,用户数据主要存放在ADS上,将用户特征存放在ADS的多值列中;在自建机房内,采用Kylin中的Cube来存放用户的基础维度的特征,便于快速的查询。

美柚大数据应用

94701654d6cc8155be5306584cdc39f0fdf85af1

美柚大数据产品地图

上图是大数据产品地图,图中包含了美柚利用大数据衍生的产品。其中已上线的BI系统,是通过大数据分析形成的报表类,它能够加深对系统的理解和辅助下一步业务决策的进行;另一个是反垃圾算法,通过大数据算法对一些垃圾广告智能识别、处理。还有实时业务监控、首页推荐、个性化推送、个性化搜索等功能。同时情感分析、舆情监控、关联推荐、SSP、DMP、Ad Exchange等功能还在开发中。

a91eaae6e026e08d12153cd000a4a64aee77ab36

反垃圾算法

这张图展示了美柚利用大数据进行反垃圾算法的整体框架,主要包含两部分。虚线上方是反垃圾算法的训练流程,最开始是基于NLP自然语言处理进行,首先对文本数据(垃圾贴和正常贴)进行分词,这些分词需要定期更新,然后再对帖子进行特征处理和选取,将提取之后的特征送入分类器模型训练,其中分类器包括贝叶斯分类、逻辑回归分类等,通过训练输出分类模型的结果。这些训练最初是在自有机房进行的,后来随着数据量的增加,已将部分模型训练迁移到阿里云上。

虚线下方是机房内实时计算的处理流程,用户发帖和回复之后,将其写入Kafka消息队列,首先会对白名单用户过滤,然后一是依据分类模型的训练效果,对文本进行识别和分类,对垃圾帖和非垃圾帖进行判别;另外的方式就是通过Simhash算法对文本相似对度进行计算,进行相似贴统计,最后通过这些策略汇总,生成整个反垃圾算法。近期美柚对该算法又做了进一步的迭代,对用户的昵称、发帖时间间隔、发帖行为进行分析,更好地进行了预防垃圾帖。通过阿里云提供的丰富的开发套件和算法库,大大缩短了美柚从想法到产品的时间。


关于美柚的更多实践详情:美柚:最懂女性App背后的混合云架构与大数据服务
原文发布日期:2016-03-28
云栖社区场景研究小组成员:贾子甲,仲浩。

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
存储 弹性计算 安全
云场景实践研究第80期:华大基因
作为全球最大的基因组学研究中心,华大基因在阿里云的帮助下,实现了海量数据的及时获取、快速分析、安全储存。本文将带领大家一同了解华大基因的基于大数据分析的云计算实践之路。
4447 1
|
人工智能 物联网 大数据
云场景实践研究第89期:中信集团
中信云平台从立项到上线仅用了1个月,用户数从0发展到13万仅用了5个月。快,是中信2016年的工作总结重要的一项。如今,中信集团正在通过云计算、大数据、人工智能等技术实现互联互通的数字化建设,并通过数字化实现业务转型,找到新价值定位,形成新商业模式。
3132 0
|
监控 BI 分布式数据库
云场景实践研究第81期:大搜车
2017云栖大会HBase专场,大搜车高级数据架构师申玉宝带来阿里云云数据库HBase在大搜车金融业务中的应用实践。本文主要从数据大屏开始谈起,进而分享了GPS风控实践,包括架构、聚集分析等,最后还分享了流式数据统计,包括数据流、数据合流和服务监控等。
2027 0
|
分布式计算 大数据 关系型数据库
云场景实践研究第83期:众安保险
当传统保险公司还在将“开门红”作为重中之重提前几个月做准备的时候,互联网保险公司关注的则是“双十一”和“双十二”。2017年双十一当日,刚刚在香港上市的众安保险的保单量突破3亿,比2014年增长超过200%。阿里云所输出的服务,则在帮助基础设施建设发挥“乘数效应”。
1906 0
|
新零售 分布式计算 监控
云场景实践研究第40期:网聚宝
作为阿里云的深度用户,网聚宝的成长和阿里云的成长已经深深交织在了一起,在公开的5个产品技术上总投入资源大约是同类产品的1/5。作为一个中小规模的技术团队,客户已有3000多家品牌。本文将详细解读网聚宝在使用阿里云产品4年的过程中,基于云计算的架构心得。
2000 0
|
监控 数据可视化 大数据
云场景实践研究第86期:美甲帮
借助阿里云的力量,美甲帮实现了针对百万用户的精细运营,并且在业务上更敏捷、更智能、更具洞察力,还能够快速响应新业务的数据及分析需求。
2083 0
|
安全 NoSQL 大数据
云场景实践研究第51期:趣店
对于像趣店这样的创业团队而言,由于成本问题,自建IDC显然是不现实的,所以趣店在创业之初就选择了上云。如今,趣店对于阿里云存在着深度依赖的关系,只要有需求一来,技术团队首先会去思考阿里云有没有这样的服务,这样的方式帮助趣店将精力集中在自己的业务本身,使得产品能够迅速得以迭代。
2108 0
|
数据采集 分布式计算 算法
云场景实践研究第57期:明源云
本文中,明源云分享了整个的地产行业在阿里云大数据平台上的探索应用实践。自定义构建设计企业内部数据管理平台DMP平台,并通过应用场景诠释了大数据在地产行业的作用。
2146 0
|
新零售 存储 安全
云场景实践研究第62期:华栖云
在云栖大会成都峰会上,华栖云联合阿里云发布“云上电视台”解决方案,面向电视台新媒体部门,面向视频PGC/UGC,在阿里公共云上,一站式提供从直播、点播、短视频的生产、制作、发布到用户数据存留分析、精准推送、视频内容的生命周期管理等全套的解决方案。
2323 0
|
运维 关系型数据库 数据库
云场景实践研究第52期:畅游
混合云在安全上有很重要的优势,阿里安全体系很健全,混合云模式既保证了用户线下的场景核心需求,同时依托阿里安全防护体系,将安全堡垒又加固了一层,混合云可能比常规的云上云下打通更实际,优势更明显。借助阿里云提供的混合云解决方案,畅游在游戏的维护成本等各方面都有很大的进步,其故障修复和应用上线的时间速度提升几十倍甚至上百倍。
2484 0