EXPLAIN sql优化方法(1) 添加索引

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介:
添加索引优化器更高效率地执行语句 

假设我们有两个数据表t1和t2,每个有1000行,包含的值从1到1000。下面的查询查找出两个表中值相同的数据行:

Java代码   收藏代码
  1. mysql> SELECT t1.i1, t2.i2 FROM t1, t2 WHERE t1.i1 = t2.i2;  
  2. +------+------+  
  3. | i1 | i2 |  
  4. +------+------+  
  5. 1 | 1 |  
  6. 2 | 2 |  
  7. 3 | 3 |  
  8. 4 | 4 |  
  9. 5 | 5 |  

两个表都没有索引的时候,EXPLAIN产生下面的结果:

Java代码   收藏代码
  1. mysql> EXPLAIN SELECT t1.i1, t2.i2 FROM t1, t2 WHERE t1.i1 = t2.i2\G  
  2. *************************** 1. row ***************************  
  3. id: 1  
  4. select_type: SIMPLE  
  5. table: t1  
  6. type: ALL  
  7. possible_keys: NULL  
  8. key: NULL  
  9. key_len: NULL  
  10. ref: NULL  
  11. rows: 1000  
  12. Extra:  
  13. *************************** 2. row ***************************  
  14. id: 1  
  15. select_type: SIMPLE  
  16. table: t2  
  17. type: ALL  
  18. possible_keys: NULL  
  19. key: NULL  
  20. key_len: NULL  
  21. ref: NULL  
  22. rows: 1000  
  23. Extra: Using whe  

 类型列中的ALL表明要进行检查所有数据行的全表扫描。可能键列中的NULL表明没有找到用于提高查询速度的备选索引(键、键长度和参考列都是NULL也是因为缺少合适的索引)。Using where表明使用WHERE子句中的信息来识别合格的数据行。 这段信息告诉我们,优化器没有为提高执行查询的效率找到任何有用的信息:
它将对t1表进行全表扫描。

对于t1中的每一行,它将执行t2的全表扫描,使用WHERE子句中的信息识别出合格的行。
行数值显示了优化器估计的每个阶段查询需要检查的行数。T1的估计值是1000,因为1000可以完成全表扫描。相似地,t2的估计值也是1000,但是这个值是对于t1的每一行的。换句话说,优化器所估计的处理该查询所需要检查的数据行组合的数量是1000×1000,也就是一百万。这会造成很大的浪费 ,因为实际上只有1000个组合符合WHERE子句的条件。

 

为了使这个查询的效率更高,给其中一个联结列添加索引 并重新执行EXPLAIN语句:

Java代码   收藏代码
  1. mysql> ALTER TABLE t2 ADD INDEX (i2);  
  2. mysql> EXPLAIN SELECT t1.i1, t2.i2 FROM t1, t2 WHERE t1.i1 = t2.i2\G  
  3. *************************** 1. row ***************************  
  4. id: 1  
  5. select_type: SIMPLE  
  6. table: t1  
  7. type: ALL  
  8. possible_keys: NULL  
  9. key: NULL  
  10. key_len: NULL  
  11. ref: NULL  
  12. rows: 1000  
  13. Extra:  
  14. *************************** 2. row ***************************  
  15. id: 1  
  16. select_type: SIMPLE  
  17. table: t2  
  18. type: ref  
  19. possible_keys: i2  
  20. key: i2  
  21. key_len: 5  
  22. ref: sampdb.t1.i1  
  23. rows: 10  
  24. Extra: Using where; Using index  

 我们可以看到性能提高了。T1的输出没有改变(表明还是需要进行全表扫描),但是优化器处理t2的方式就有所不同了:
类型从ALL改变为ref,意味着可以使用参考值(来自t1的值)来执行索引查找,定位t2中合格的数据行。
参考值在参考(ref)字段中给出了:sampdb.t1.i1。
数值从1000降低到了10,显示出优化器相信对于t1中的每一行,它只需要检查t2中的10行(这是一个悲观的估计值。实际上,在t2中只有一行与 t1中数据行匹配。我们在后面会看到如何帮助优化器改善这个估计值)。数据行组合的全部估计值使1000×10=10000。它比前面的没有索引的时候估 计出来的一百万好多了。
对t1进行索引有价值吗?实际上,对于这个特定的联结操作,扫描一张表是必要的,因此没有必要对t1建立索引。如果你想看到效果,可以索引t1.i1并再次运行EXPLAIN:

Java代码   收藏代码
  1. mysql> ALTER TABLE t1 ADD INDEX (i1);  
  2. mysql> EXPLAIN SELECT t1.i1, t2.i2 FROM t1, t2 WHERE t1.i1 = t2.i2\G  
  3. *************************** 1. row ***************************  
  4. id: 1  
  5. select_type: SIMPLE  
  6. table: t1  
  7. type: index  
  8. possible_keys: i1  
  9. key: i1  
  10. key_len: 5  
  11. ref: NULL  
  12. rows: 1000  
  13. Extra: Using index  
  14. *************************** 2. row ***************************  
  15. id: 1  
  16. select_type: SIMPLE  
  17. table: t2  
  18. type: ref  
  19. possible_keys: i2  
  20. key: i2  
  21. key_len: 5  
  22. ref: sampdb.t1.i1  
  23. rows: 10  
  24. Extra: Using where; Using index  

上面的输出与前面的EXPLAIN的输出相似,但是添加索引对t1的输出有一些改变。类型从NULL改成了index,附加(Extra)从空的改成了 Using index。这些改变表明,尽管对索引的值仍然需要执行全表扫描,但是优化器还是可以直接从索引文件中读取值,根据不需要使用数据文件。你可以从 MyISAM表中看到这类结果,在这种情况下,优化器知道自己只询问索引文件就能够得到所有需要的信息。对于InnoDB 和BDB表也有这样的结果,在这种情况下优化器可以单独使用索引中的信息而不用搜索数据行。

我们可以运行ANALYZE TABLE使优化器进一步优化估计值。这会引起服务器生成键值的静态分布。分析上面的表并再次运行EXPLAIN得到了更好的估计值:

Java代码   收藏代码
  1. mysql> ANALYZE TABLE t1, t2;  
  2. mysql> EXPLAIN SELECT t1.i1, t2.i2 FROM t1, t2 WHERE t1.i1 = t2.i2\G  
  3. *************************** 1. row ***************************  
  4. id: 1  
  5. select_type: SIMPLE  
  6. table: t1  
  7. type: index  
  8. possible_keys: i1  
  9. key: i1  
  10. key_len: 5  
  11. ref: NULL  
  12. rows: 1000  
  13. Extra: Using index  
  14. *************************** 2. row ***************************  
  15. id: 1  
  16. select_type: SIMPLE  
  17. table: t2  
  18. type: ref  
  19. possible_keys: i2  
  20. key: i2  
  21. key_len: 5  
  22. ref: sampdb.t1.i1  
  23. rows: 1  
  24. Extra: Using where; Using inde  

在这种情况下,优化器估计在t2中与t1的每个值匹配的数据行只有一个。

 

Java代码   收藏代码
  1. mysql > explain select A . id , A . title , B . title from jos_content A , jos_categories B where A . catid = B . id ;  
  2. +----+-------------+-------+--------+---------------+---------+---------+---------------------+-------+-------------+  
  3. | id | select_type | table | type    | possible_keys | key      | key_len | ref                  | rows   | Extra        |  
  4. +----+-------------+-------+--------+---------------+---------+---------+---------------------+-------+-------------+  
  5. |  1 | SIMPLE       | A      | ALL     | NULL           | NULL     | NULL     | NULL                 | 46585 |             |  
  6. |  1 | SIMPLE       | B      | eq_ref | PRIMARY        | PRIMARY | 4        | joomla_test . A . catid |      1 | Using where |  
  7. +----+-------------+-------+--------+---------------+---------+---------+---------------------+-------+-------------+  
  8. 2 rows in set ( 0.00 sec )  

这个是我们经常使用的一种查询方式,对B表的联接类型使用了eq_ref,索引使用了PRIMARY,但是对于A表,却没有使用任何索引,这可能不是我们想要的。
查看以上SQL语句,我们可能会想到,有必要给A.catid加个索引了。

Java代码   收藏代码
  1. mysql > alter table jos_content add index idx_catid ( ` catid ` ) ;  
  2. Query OK , 46585 rows affected ( 0.75 sec )  
  3. Records : 46585   Duplicates : 0   Warnings : 0  
  4.    
  5. mysql > explain select A . id , A . title , B . title from jos_content A , jos_categories B where A . catid = B . id ;  
  6. +----+-------------+-------+--------+---------------+---------+---------+---------------------+-------+-------------+  
  7. | id | select_type | table | type    | possible_keys | key      | key_len | ref                  | rows   | Extra        |  
  8. +----+-------------+-------+--------+---------------+---------+---------+---------------------+-------+-------------+  
  9. |  1 | SIMPLE       | A      | ALL     | idx_catid      | NULL     | NULL     | NULL                 | 46585 |             |  
  10. |  1 | SIMPLE       | B      | eq_ref | PRIMARY        | PRIMARY | 4        | joomla_test . A . catid |      1 | Using where |  
  11. +----+-------------+-------+--------+---------------+---------+---------+---------------------+-------+-------------+  
  12. 2 rows in set ( 0.00 sec )  
这样表A便使用了idx_catid索引。下面我们做一次三个表的联合查询
Java代码   收藏代码
  1. mysql > explain select A . id , A . title , B . title from jos_content A , jos_categories B , jos_sections C where A . catid = B . id and A . sectionid = C . id ;  
  2. +----+-------------+-------+--------+---------------+---------+---------+---------------------+-------+--------------------------------+  
  3. | id | select_type | table | type    | possible_keys | key      | key_len | ref                  | rows   | Extra                           |  
  4. +----+-------------+-------+--------+---------------+---------+---------+---------------------+-------+--------------------------------+  
  5. |  1 | SIMPLE       | C      | index   | PRIMARY        | PRIMARY | 4        | NULL                 |      2 | Using index                     |  
  6. |  1 | SIMPLE       | A      | ALL     | idx_catid      | NULL     | NULL     | NULL                 | 46585 | Using where ; Using join buffer |  
  7. |  1 | SIMPLE       | B      | eq_ref | PRIMARY        | PRIMARY | 4        | joomla_test . A . catid |      1 | Using where                     |  
  8. +----+-------------+-------+--------+---------------+---------+---------+---------------------+-------+--------------------------------+  
  9. 3 rows in set ( 0.00 sec )  
 这里显示了Mysql先将C表读入查询,并使用PRIMARY索引,然后联合A表进行查询,这时候type显示的是ALL,可以用的索引有idx_catid,但是实际没有用。
原因非常明显,因为使用的连接条件是A.sectionid=C.id,所以我们给A.sectionid加个索引先。
Java代码   收藏代码
  1. mysql > alter table jos_content add index idx_section ( ` sectionid ` ) ;  
  2. Query OK , 46585 rows affected ( 0.89 sec )  
  3. Records : 46585   Duplicates : 0   Warnings : 0  
  4.    
  5. mysql > explain select A . id , A . title , B . title from jos_content A , jos_categories B , jos_sections C where A . catid = B . id and A . sectionid = C . id ;  
  6. +----+-------------+-------+--------+-----------------------+-------------+---------+---------------------+-------+-------------+  
  7. | id | select_type | table | type    | possible_keys          | key          | key_len | ref                  | rows   | Extra        |  
  8. +----+-------------+-------+--------+-----------------------+-------------+---------+---------------------+-------+-------------+  
  9. |  1 | SIMPLE       | C      | index   | PRIMARY                | PRIMARY      | 4        | NULL                 |      2 | Using index |  
  10. |  1 | SIMPLE       | A      | ref     | idx_catid , idx_section | idx_section | 4        | joomla_test . C . id     | 23293 | Using where |  
  11. |  1 | SIMPLE       | B      | eq_ref | PRIMARY                | PRIMARY      | 4        | joomla_test . A . catid |      1 | Using where |  
  12. +----+-------------+-------+--------+-----------------------+-------------+---------+---------------------+-------+-------------+  
  13. 3 rows in set ( 0.00 sec )  
 这时候显示结果告诉我们,效果很明显,在连接A表时type变成了ref,索引使用了idx_section,如果我们注意看后两列,对A表的查询结果后一次明显少了一半左右,而且没有用到join buffer。
这个表读入的顺序是Mysql优化器帮我们做的,可以得知,用记录数少的表做为基础表进行联合,将会得到更高的效率。
对于上面的语句,我们换一种写法
Java代码   收藏代码
  1. mysql > explain select A . id , A . title , B . title from jos_content A left join jos_categories B on A . catid = B . id left join jos_sections C on A . sectionid = C . id ;  
  2. +----+-------------+-------+--------+---------------+---------+---------+-------------------------+-------+-------------+  
  3. | id | select_type | table | type    | possible_keys | key      | key_len | ref                      | rows   | Extra        |  
  4. +----+-------------+-------+--------+---------------+---------+---------+-------------------------+-------+-------------+  
  5. |  1 | SIMPLE       | A      | ALL     | NULL           | NULL     | NULL     | NULL                     | 46585 |             |  
  6. |  1 | SIMPLE       | B      | eq_ref | PRIMARY        | PRIMARY | 4        | joomla_test . A . catid      |      1 |             |  
  7. |  1 | SIMPLE       | C      | eq_ref | PRIMARY        | PRIMARY | 4        | joomla_test . A . sectionid |      1 | Using index |  
  8. +----+-------------+-------+--------+---------------+---------+---------+-------------------------+-------+-------------+  
  9. 3 rows in set ( 0.00 sec )  
 Mysql读入表的顺序被改变了,这意味着, 如果我们用left join来做连接查询,Mysql会按SQL语句中表出现的顺序读入,还有一个有变化的地方是联接B和C的type都变成了eq_ref,前边我们说过, 这样说明Mysql可以找到唯一的行,这个效率是比ref要高的。
 
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
5月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
2月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
201 6
|
8月前
|
SQL 存储 关系型数据库
SQL优化策略与实践:组合索引与最左前缀原则详解
本文介绍了SQL优化的多种方式,包括优化查询语句(避免使用SELECT *、减少数据处理量)、使用索引(创建合适索引类型)、查询缓存、优化表结构、使用存储过程和触发器、批量处理以及分析和监控数据库性能。同时,文章详细讲解了组合索引的概念及其最左前缀原则,即MySQL从索引的最左列开始匹配条件,若跳过最左列,则索引失效。通过示例代码,展示了如何在实际场景中应用这些优化策略,以提高数据库查询效率和系统响应速度。
320 10
|
10月前
|
SQL 关系型数据库 MySQL
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
|
9月前
|
SQL 索引
【YashanDB知识库】字段加上索引后,SQL查询不到结果
【YashanDB知识库】字段加上索引后,SQL查询不到结果
|
7月前
|
SQL 数据采集 关系型数据库
实现MySQL与SQL Server之间数据迁移的有效方法
总的来说,从MySQL到SQL Server的数据迁移是一个涉及到很多步骤的过程,可能会遇到各种问题和挑战。但只要精心规划、仔细执行,这个任务是完全可以完成的。
541 18
|
7月前
|
SQL 存储 自然语言处理
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
|
7月前
|
SQL Java 数据库连接
Java中实现SQL分页的方法
无论何种情况,选择适合自己的,理解了背后的工作原理,并能根据实际需求灵活变通的方式才是最重要的。
203 9
|
8月前
|
SQL 关系型数据库 MySQL
【MySQL】SQL分析的几种方法
以上就是SQL分析的几种方法。需要注意的是,这些方法并不是孤立的,而是相互关联的。在实际的SQL分析中,我们通常需要结合使用这些方法,才能找出最佳的优化策略。同时,SQL分析也需要对数据库管理系统,数据,业务需求有深入的理解,这需要时间和经验的积累。
291 12
|
8月前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。