DNS协议

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介:
DNS  的来由
  如果您为您的机器设定过  internet  连线﹐那么您一定接触过 DNS 了﹐但 DNS 又是什么东东呢﹖说穿了﹐DNS 是用来帮助记忆网路位址的﹐完全是为了迁就人类的记忆思维而设的。 
  DNS 的全称是 Domain Name System(或 Service) ﹐当您连上一个网址﹐在URL打上﹕www.google.com 的时候﹐可以说就是使用了 DNS 的服务了。但如果您知道这个 www.google.com 的 IP 位址﹐直接输入 216.239.53.101 也同样可以到达这个网址。其实﹐电脑使用的只是 IP 位址而已(最终也是 0 和 1 啦)﹐这个 www.google.com 只是让人们容易记忆而设的。因为我们人类﹐对一些比较有意义的文字记忆(如﹕www.google.com)﹐比记忆那些毫无头绪的号码(如﹕216.239.53.101)﹐往往容易得多。DNS 的作用就是为我们在文字和 IP 之间担当了翻译﹐而免除了强记号码的痛苦。 
  假如您的电话有名字记忆功能﹐您只需知道对方的名字﹐就可以拨号给友人了﹐我们可以说﹐这电话也具备如 DNS 的功能了呢﹗但是﹐我们在网路中使用的 DNS 系统﹐就是这么简单吗﹖非也﹐复杂得很呢﹗下面﹐就让我们一起去探索一下 DNS 的奥秘﹕ 
  在早期的 IP 网路世界里面﹐每台电脑都只用 IP 位址来表示﹐不久人们就发现这样很难记忆﹐于是﹐一些  UNIX  的管理者﹐就建立一个 HOSTS 对应表﹐将 IP 和主机名字对应起来﹐这样﹐用户只需输入电脑名字﹐就可以代替 IP 来进行沟通了。如果你安装了  Linux  系统﹐在 /etc 下面就可以找到这个 hosts 档案﹔在 NT 的系统里﹐你也可以在 \winnt\system32\drivers\etc 下面找到它。不过这个 HOSTS 档是要由管理者手工维护的﹐最大的问题是无法适用于大型网路﹐而且更新也是件非常头痛的事情。这就是 DNS 大派用场的时候了。 
  DNS 的结构 
  DNS 是一个分层级的分散式名称对应系统﹐有点像电脑的目录树结构﹕在最顶端的是一个“root”﹐然后其下分为好几个基本类别名称﹐如﹕com﹑org﹑edu 等﹔再下面是组织名称﹐如﹕ibm﹑microsoft﹑intel 等﹔继而是主机名称﹐如﹕www﹑mail﹑ftp 等。因为当初 internet 是从美国发展起的﹐所以当时并没有国域名称﹐但随着后来 internet 的蓬勃发展﹐DNS 也加进了诸如 tw﹑hk﹑cn 等国域名称。所以一个完整的 dns 名称就好象是这样的﹕www.xyz.com.tw﹐而整个名称对应的就是一个(或多个) IP 位址了。 
  在早期的设计下﹐root 下面只有六个组织类别﹕ 
    TCP/IP基础:DNS协议(图一)
  不过﹐自从组织类别名称开放以后﹐各种各样五花八门的名称也相继涌现出来了﹐但无论如何﹐取名的规则最好尽量适合网站性质。除了原来的类别资料由美国本土的 NIC(Network Information Center) 管理之外﹐其它在国域以下的类别分别由该国的 NIC 管理(比方说台湾的 DNS 将授权给 twnic 来管理)。这样的结构看起来就像这样﹕ 
    TCP/IP基础:DNS协议(图二)  
  在结构中﹐各组织的 DNS 经过申请后由该组织或其委托主机管理(通常当您申请注册一个 domain 域名称的时候﹐都要指定两台 DNS 主机负责该域名的 DNS 管理)。 
  DNS 的运作 
  在我们设定 IP 网路环境的时候﹐都要告诉每台主机关于 DNS 伺服器的位址(我们可以手动的在每一台主机上面设置﹐也可以使用 DHCP 来指定)。但这设定的义意何在呢?从前面的介绍我们或可知道:其目的就是请 DNS 帮忙解析主机名称与 IP 位址啦。在这个设定过程中,DNS 被称为 resolver (也就是负责解析的 DNS Server),而被设定主机,则只是单纯的 DNS Client 了,也就是提出解析请求的主机。 
  下面让我们看看 DNS 是怎样运作的﹕ 
  1. 当被询问到有关本域名之内的主机名称的时候﹐DNS 伺服器会直接做出回答﹔ 
  2. 客户端向伺服器提出查询项目﹔ 
  3. 当被询问到有关本域名之内的主机名称的时候﹐DNS 伺服器会直接做出回答﹔ 
  4. 如果所查询的主机名称属于其它域名的话﹐会检查快取记忆体(Cache)﹐看看有没有相关资料﹔ 
  5. 如果没有发现﹐则会转向 root 伺服器查询﹔ 
  6. 然后 root 伺服器会将该域名之下一层授权(authoritative)伺服器的位址告知(可能会超过一台)﹔ 
  7. 本地伺服器然后会向其中的一台伺服器查询﹐并将这些伺服器名单存到记忆体中﹐以备将来之需(省却再向 root 查询的步骤)﹔ 
  8. 远方伺服器回应查询﹔ 
  9. 若该回应并非最后一层的答案,则继续往下一层查询,直到获的客户端所查询的结果为止﹔ 
  10. 将查询结果回应给客户端﹐并同时将结果储存一个备份在自己的快取记忆里面﹔ 
  11. 如果在存放时间尚未过时之前再接到相同的查询﹐则以存放于快取记忆里面的资料来做回应。 
  从这个过程我们可以看出﹐没有任何一台 DNS 主机会包含所有域名的 DNS 资料﹐资料都是分散在全部的 DNS 伺服器中﹐而 NIC 只需知道各 DNS 伺服器位址就可以了。
  为了更好地理解一下 DNS 的运作﹐让我们用下图看看查询 www.home.netman.com.tw 这台主机位址的过程﹕ 
    TCP/IP基础:DNS协议(图三)  
  在这个例子中﹐www.home.netman.com.tw 台主机的 DNS 对应资料﹐是由负责 home.netman.com.tw 这个域名的 DNS 伺服器管理的。(在 DNS 术语中﹐我们称一个域名为“zone”﹐这个 zone 可以是您从 NIC 申请回来的域名﹐也可以是从该域名之下延伸出来的“sub-zone”)。在这台 DNS 伺服器上面﹐必须有一个关于 home.netman.com.tw 这个 zone 的档案﹐而这档案里面必须有一笔关于 www 的记录(任何主机都是以“记录”来表示,称为 Resource Record)。这个记录可以为一个 IP 位址﹐也可以以别名形式来对应一台主机名称﹐但无论如何﹐所对应的主机名称最终是要被一个 IP 位址所对应着就是了。 
  同时﹐DNS 还能提供“反查询”(reverse lookup) 功能﹐也就是以 IP 来查询主机名称。网路上面的许多服务﹐如﹕FTP, SMTP﹑等等﹐都需要到这个功能。其实﹐DNS 服务本身就必须要使用反查询功能﹐而且在设定上﹐也必须要为每个网路建立起 reverse zone。虽然有些人发觉即使没有 reverse zone 也可以使用到 DNS 服务﹐但其中弊端却不容易被察觉到﹐在这个(中文)网页﹕http://dnsrd.nctu.edu.tw/Basic/WhenToUse-Rev.html 上面﹐您可以看到忽略 revers zone 所致一些问题。 
  DNS 的名称记录 
  事实上﹐DNS 不仅仅是用来解释位址用的﹐而且还可以回答更多关于网路和主机的其它信息﹐其中很重要的一个功能就是可以供 邮件系统 进行路由。这些资料﹐通常会以不同的“记录”名称出现在DNS的资料档案中。下面让我们参考一个 Linux 的 DNS 档案﹐看看这些记录是如何表示的﹕ 
  ;
  ; Zone file for siyongc.domain
  ;
  ; Then full zone file
  ;
  $TTL 86400
  @ IN SOA redhat52.siyongc.domain. netman.siyongc.domain. (
   1999092801 ; serial
   8H ; refresh
   2H ; retry
   1W ; expire
   1D ) ; minimun
  ;
   IN TXT "A test domain, created by Netman"
   IN NS redhat52
   IN NS debian.home
   IN MX 10 redhat52.siyongc.domain.
   IN MX 20 debian.home
  ;
  localhost IN A 127.0.0.1
  ﹔
  gw IN A 192.168.0.17
   IN HINFO "Redhat" "MASQ"
   IN TXT "The masquerade gateway to internet"
  ﹔
  redhat52 IN A 192.168.0.17
   IN MX 10 redhat52
   IN MX 20 debian.home
   IN HINFO "Dell PII 266" "Linux RedHat"
  www IN CNAME redhat52
  mail IN CNAME redhat52
  ftp IN CNAME redhat52
  news IN CNAME redhat52
  smtp IN CNAME redhat52
  ﹔
  pii266 IN A 192.168.0.15
   IN MX 10 redhat52.siyongc.domain.
   IN MX 20 debian.home.
  ﹔
  slware36 IN A 192.168.0.18
   IN MX 10 redhat52.siyongc.domain.
   IN MX 20 debian.home.
  ﹔
  rhroute IN A 192.168.0.4
   IN MX 10 redhat52.siyongc.domain.
   IN MX 20 debian.home.
  ﹔
  home IN ns debian.home.siyongc.domain.
  debian.home IN A 10.0.2.101
  我们姑且不理会开头那几行的意思﹐那是给 DNS 系统本身使用的(我将会在“学习 Linux”文章里面再详细讨论)﹐这里我们只是看看几个记录名称而已﹕ 
    TCP/IP基础:DNS协议(图四)  
  分擔 DNS 工作 
  
  由於 DNS 的重要性日益顯著,為提高其容錯能力及查詢效能,我們在架設某一單一 zone 的時侯,常以多台伺服器來負責該 zone 的服務。其中,我們必需指定一台 Primary(master) DNS 伺服器,它是架設在某一個網域下被主要授權並控制所有名稱記錄的主控伺服器﹐管轄著該網域的所有記錄資料﹐這些記錄資料只有 primary(master) 可以修改。 
  

  但如果在一個比較大型的網路中﹐DNS 伺服器就會變得很繁忙﹐所以您可以設定多個 DNS 來分擔 master 的工作﹐但您或許不願意到每一個 DNS 伺服器去更新資料吧﹖而且就算您願意這樣做﹐也容易出現錯誤或資料不同步的情形。這樣您可以設定其它的伺服器為 secondary (slave) DNS 來複製 master 上面的記錄資料﹐這樣﹐其它的電腦可以被分派到不同的 DNS 做查詢﹐既可以分擔 master 的工作﹐而且資料也可以自動進行同步工作。為確保資料的一致性,master 每次更新過資料後會以 notify 機制主動通知 slave 前來同步。此外,您可以設定 DNS 資料同步的時間間隔﹐在 dns 檔案中的 Refresh 設定就是了。



本文转自sucre03 51CTO博客,原文链接:http://blog.51cto.com/sucre/382238,如需转载请自行联系原作者

相关文章
|
4月前
|
XML 监控 网络协议
云深处绝影四足机器人协议学习解析
本文详细介绍并解析了云深处绝影X20四足机器人的通信协议,包括TCP服务端端口号、基于Service的请求/响应通信机制、通信帧结构、消息类型、常见的通信示例如获取状态和导航请求,以及运动控制的参数和命令。文中还提出了对协议中某些未明确说明或可能存在的问题的疑惑。
52 0
云深处绝影四足机器人协议学习解析
|
2月前
|
XML JSON API
ServiceStack:不仅仅是一个高性能Web API和微服务框架,更是一站式解决方案——深入解析其多协议支持及简便开发流程,带您体验前所未有的.NET开发效率革命
【10月更文挑战第9天】ServiceStack 是一个高性能的 Web API 和微服务框架,支持 JSON、XML、CSV 等多种数据格式。它简化了 .NET 应用的开发流程,提供了直观的 RESTful 服务构建方式。ServiceStack 支持高并发请求和复杂业务逻辑,安装简单,通过 NuGet 包管理器即可快速集成。示例代码展示了如何创建一个返回当前日期的简单服务,包括定义请求和响应 DTO、实现服务逻辑、配置路由和宿主。ServiceStack 还支持 WebSocket、SignalR 等实时通信协议,具备自动验证、自动过滤器等丰富功能,适合快速搭建高性能、可扩展的服务端应用。
151 3
|
3月前
|
域名解析 存储 网络协议
深入解析网络通信关键要素:IP 协议、DNS 及相关技术
本文详细介绍了IP协议报头结构及其各字段的功能,包括版本、首部长度、服务类型、总长度、标识、片偏移、标志、生存时间(TTL)、协议、首部检验和等内容。此外,还探讨了IP地址的网段划分、特殊IP地址的应用场景,以及路由选择的大致流程。最后,文章简要介绍了DNS协议的作用及其发展历史,解释了域名解析系统的工作原理。
137 5
深入解析网络通信关键要素:IP 协议、DNS 及相关技术
|
4月前
|
缓存 网络协议 安全
【网络攻防战】DNS协议的致命弱点:如何利用它们发动悄无声息的网络攻击?
【8月更文挑战第26天】DNS(域名系统)是互联网的关键组件,用于将域名转换为IP地址。然而,DNS协议存在安全漏洞,包括缺乏身份验证机制、缓存中毒风险及放大攻击的可能性。通过具体案例,如DNS缓存中毒和DNS放大攻击,攻击者能够误导用户访问恶意站点或对目标服务器实施DDoS攻击。为了防范这些威胁,可以采用DNSSEC实现数字签名验证、利用加密的DNS服务(如DoH或DoT)、限制DNS服务器响应以及及时更新DNS软件等措施。理解并应对DNS的安全挑战对于确保网络环境的安全至关重要。
122 2
|
20天前
|
监控 网络协议 网络性能优化
网络通信的核心选择:TCP与UDP协议深度解析
在网络通信领域,TCP(传输控制协议)和UDP(用户数据报协议)是两种基础且截然不同的传输层协议。它们各自的特点和适用场景对于网络工程师和开发者来说至关重要。本文将深入探讨TCP和UDP的核心区别,并分析它们在实际应用中的选择依据。
48 3
|
1天前
|
传感器
Modbus协议深入解析
Modbus协议是由Modicon公司(现施耐德电气)于1979年发明的串行通信协议,主要用于工业自动化系统中的PLC通信。本文深入解析了Modbus协议的主从模式、数据类型(线圈、离散输入、保持寄存器、输入寄存器)、帧结构和通信过程,并介绍了其应用场景和重要性。
8 0
|
1月前
|
网络协议 网络安全 网络虚拟化
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算。通过这些术语的详细解释,帮助读者更好地理解和应用网络技术,应对数字化时代的挑战和机遇。
73 3
|
25天前
|
负载均衡 网络协议 算法
OSPF与其他IGP协议的比较:全面解析与应用场景
OSPF与其他IGP协议的比较:全面解析与应用场景
38 0
|
3月前
|
前端开发 JavaScript 安全
深入解析 http 协议
HTTP(超文本传输协议)不仅用于传输文本,还支持图片、音频和视频等多种类型的数据。当前广泛使用的版本为 HTTP/1.1。HTTPS 可视为 HTTP 的安全增强版,主要区别在于添加了加密层。HTTP 请求和响应均遵循固定格式,包括请求行/状态行、请求/响应头、空行及消息主体。URL(统一资源定位符)用于标识网络上的资源,其格式包含协议、域名、路径等信息。此外,HTTP 报头提供了附加信息,帮助客户端和服务端更好地处理请求与响应。状态码则用于指示请求结果,如 200 表示成功,404 表示未找到,500 表示服务器内部错误等。
82 0
深入解析 http 协议
|
3月前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
在网络数据的海洋中,网络爬虫遵循HTTP协议,穿梭于互联网各处,收集宝贵信息。本文将从零开始,使用Python的requests库,深入解析HTTP协议,助你构建自己的网络爬虫帝国。首先介绍HTTP协议基础,包括请求与响应结构;然后详细介绍requests库的安装与使用,演示如何发送GET和POST请求并处理响应;最后概述爬虫构建流程及挑战,帮助你逐步掌握核心技术,畅游数据海洋。
75 3

相关产品

  • 云解析DNS
  • 推荐镜像

    更多