Qt 内存管理机制

简介:

这篇文章首先发布于我的主页 http://www.devbean.info,以后也会直接发布在那里。现在有 Flex 4 的一篇和 《从 C++ 到 Objective-C》系列,感谢大家支持!

强类型语言在创建对象时总会显式或隐式地包含对象的类型信息。也就是说,强类型语言在分配对象内存空间时,总会关联上对象的类型。相比之下,弱类型 语言则不会这样做。在分配了内存空间之后,有两种方法释放空间:手工释放,或者是使用垃圾收集器。C++ 要求开发者手工释放内存空间。这样做的好处是,开发者对内存有完全的控制能力,知道什么时候释放比较合适。Java 则使用垃圾收集器。它在后台会有一个线程根据一定的算法不停地查看哪些对象已经不被使用,可以被回收。这样做则可以将开发者从底层实现中解放出来,只需关 注于业务逻辑。

本文关注于 Qt 的内存管理,这里会使用 Qt 的机制,来实现一个简单的垃圾回收器。

C++ 内存管理机制

C++ 要求开发者自己管理内存。有三种策略:

  1. 让创建的对象自己 delete 自己的子对象(这里所说的子对象,是指对象的属性,而不是子类,以下类似);
  2. 让最后一个对象处理 delete;
  3. 不管内存。

最后一种通常成为“内存泄漏”,被认为是一种 bug。所以,我们现在就是要选出前面两种哪一种更合适一些。有时候,delete 创建的对象要比 delete 它的所有子对象简单得多;有时候,找出最后一个对象也是相当困难的。

Qt 内存管理机制

Qt 在内部能够维护对象的层次结构。对于可视元素,这种层次结构就是子组件与父组件的关系;对于非可视元素,则是一个对象与另一个对象的从属关系。在 Qt 中,删除父对象会将其子对象一起删除。这有助于减少 90% 的内存问题,形成一种类似垃圾回收的机制。

QPointer

QPointer 是一个模板类。它很类似一个普通的指针,不同之处在于,QPointer 可以监视动态分配空间的对象,并且在对象被 delete 的时候及时更新。

 
  1. // QPointer 表现类似普通指针 
  2. QDate *mydate = new QDate(QDate::currentDate()); 
  3. QPointer mypointer = mydata; 
  4. mydate->year();    // -> 2005 
  5. mypointer->year(); // -> 2005 
  6.   
  7. // 当对象 delete 之后,QPointer 会有不同的表现 
  8. delete mydate; 
  9.   
  10. if(mydate == NULL) 
  11.     printf("clean pointer"); 
  12. else 
  13.     printf("dangling pointer"); 
  14. // 输出 dangling pointer 
  15.   
  16. if(mypointer.isNull()) 
  17.     printf("clean pointer"); 
  18. else 
  19.     printf("dangling pointer"); 
  20. // 输出 clean pointer 

注意上面的代码。一个原始指针 delete 之后,其值不会被设置为 NULL,因此会成为野指针。但是,QPionter 没有这个问题。

QObjectCleanupHandler

Qt 对象清理器是实现自动垃圾回收的很重要的一部分。它可以注册很多子对象,并在自己删除的时候自动删除所有子对象。同时,它也可以识别出是否有子对象被删 除,从而将其从它的子对象列表中删除。这个类可以用于不在同一层次中的类的清理操作,例如,当按钮按下时需要关闭很多窗口,由于窗口的 parent 属性不可能设置为别的窗口的 button,此时使用这个类就会相当方便。

 
  1. // 创建实例 
  2. QObjectCleanupHandler *cleaner = new QObjectCleanupHandler; 
  3. // 创建窗口 
  4. QPushButton *w = new QPushButton("Remove Me"); 
  5. w->show(); 
  6. // 注册第一个按钮 
  7. cleaner->add(w); 
  8. // 如果第一个按钮点击之后,删除自身 
  9. connect(w, SIGNAL(clicked()), w, SLOT(deleteLater())); 
  10. // 创建第二个按钮,注意,这个按钮没有任何动作 
  11. w = new QPushButton("Nothing"); 
  12. cleaner->add(w); 
  13. w->show(); 
  14. // 创建第三个按钮,删除所有 
  15. w = new QPushButton("Remove All"); 
  16. cleaner->add(w); 
  17. connect(w, SIGNAL(clicked()), cleaner, SLOT(deleteLater())); 
  18. w->show(); 

在上面的代码中,创建了三个仅有一个按钮的窗口。第一个按钮点击后,会删除掉自己(通过 deleteLater() 槽),此时,cleaner 会自动将其从自己的列表中清除。第三个按钮点击后会删除 cleaner,这样做会同时删除掉所有未关闭的窗口。

Qt 垃圾收集

随着对象变得越来越复杂,很多地方都要使用这个对象的时候,什么时候作 delete 操作很难决定。好在 Qt 对所有继承自 QObject 的类都有很好的垃圾收集机制。垃圾收集有很多种实现方法,最简单的是引用计数,还有一种是保存所有对象。下面我们将详细讲解这两种实现方法。

引用计数

应用计数是最简单的垃圾回收实现:每创建一个对象,计数器加 1,每删除一个则减 1。

 
  1. class CountedObject 
  2. public
  3.     CountedObject() 
  4.     { 
  5.         ctr=0; 
  6.     } 
  7.   
  8.     void attach() 
  9.     { 
  10.         ctr++; 
  11.     } 
  12.   
  13.     void detach() 
  14.     { 
  15.         ctr--; 
  16.         if(ctr <= 0) 
  17.             delete this
  18.     } 
  19. private
  20.     int ctr; 
  21. }; 

 

每一个子对象在创建之后都应该调用 attach() 函数,使计数器加 1,删除的时候则应该调用 detach() 更新计数器。不过,这个类很原始,没有使用 Qt 方便的机制。下面我们给出一个 Qt 版本的实现:

 
  1. class CountedObject : public QObject 
  2.     Q_OBJECT 
  3. public
  4.     CountedObject() 
  5.     { 
  6.         ctr=0; 
  7.     } 
  8.   
  9.     void attach(QObject *obj) 
  10.     { 
  11.         ctr++; 
  12.         connect(obj, SIGNAL(destroyed(QObject*)), SLOT(detach())); 
  13.     } 
  14.   
  15. public slots: 
  16.     void detach() 
  17.     { 
  18.         ctr--; 
  19.         if(ctr <= 0) 
  20.             delete this
  21.     } 
  22.   
  23. private
  24.     int ctr; 
  25. }; 

我们利用 Qt 的信号槽机制,在对象销毁的时候自动减少计数器的值。但是,我们的实现并不能防止对象创建的时候调用了两次 attach()。

记录所有者

更合适的实现是,不仅仅记住有几个对象持有引用,而且要记住是哪些对象。例如:

 
  1. class CountedObject : public QObject 
  2. public
  3.     CountedObject() 
  4.     { 
  5.     } 
  6.   
  7.     void attach(QObject *obj) 
  8.     { 
  9.         // 检查所有者 
  10.         if(obj == 0) 
  11.             return
  12.         // 检查是否已经添加过 
  13.         if(owners.contains(obj)) 
  14.             return
  15.         // 注册 
  16.         owners.append(obj); 
  17.         connect(obj, SIGNAL(destroyed(QObject*)), SLOT(detach(QObject*))); 
  18.     } 
  19.   
  20. public slots: 
  21.     void detach(QObject *obj) 
  22.     { 
  23.         // 删除 
  24.         owners.removeAll(obj); 
  25.         // 如果最后一个对象也被 delete,删除自身 
  26.         if(owners.size() == 0) 
  27.             delete this
  28.     } 
  29.   
  30. private
  31.     QList owners; 
  32. }; 

现在我们的实现已经可以做到防止一个对象多次调用 attach() 和 detach() 了。然而,还有一个问题是,我们不能保证对象一定会调用 attach() 函数进行注册。毕竟,这不是 C++ 内置机制。有一个解决方案是,重定义 new 运算符(这一实现同样很复杂,不过可以避免出现有对象不调用 attach() 注册的情况)。


本文来自 DevBean's World: http://www.devbean.info

转载时请标明文章原始出处:http://www.devbean.info/2011/03/qt_memory_management/



本文转自 FinderCheng 51CTO博客,原文链接: 

http://blog.51cto.com/devbean/526734

相关文章
|
30天前
|
存储 安全 编译器
【Qt 底层机制之信号和槽 】深入探究Qt信号和槽背后的原理
【Qt 底层机制之信号和槽 】深入探究Qt信号和槽背后的原理
140 4
|
1月前
|
监控 算法 Java
如何确保Python的内存管理机制能够有效地工作?
【2月更文挑战第19天】【2月更文挑战第57篇】如何确保Python的内存管理机制能够有效地工作?
|
1月前
|
存储 Java Python
谈谈你对 Python 的内存管理机制的理解。
【2月更文挑战第19天】【2月更文挑战第55篇】谈谈你对 Python 的内存管理机制的理解。
|
27天前
|
存储 缓存 Java
金石原创 |【JVM盲点补漏系列】「并发编程的难题和挑战」深入理解JMM及JVM内存模型知识体系机制(1)
金石原创 |【JVM盲点补漏系列】「并发编程的难题和挑战」深入理解JMM及JVM内存模型知识体系机制(1)
37 1
|
30天前
|
数据可视化 图形学 开发者
【Qt 底层机制之图形渲染引擎】深入理解 Qt 的 渲染机制:从基础渲染到高级图形
【Qt 底层机制之图形渲染引擎】深入理解 Qt 的 渲染机制:从基础渲染到高级图形
157 4
|
1月前
|
监控 安全 算法
深入理解操作系统的内存管理机制
【2月更文挑战第30天】 本文旨在探讨操作系统中至关重要的一环——内存管理。与传统摘要不同,本文将直接点出核心议题:操作系统是如何通过复杂的数据结构和算法实现对计算机内存的有效管理和优化。文章将详细阐述内存管理的关键组成部分,包括内存分配、虚拟内存技术、分页和段机制等,并探讨它们如何共同协作以支持多任务处理和保护系统安全。通过对这些机制的深入了解,读者可以更好地把握操作系统设计之精髓及对现代计算环境的深远影响。
|
2天前
|
存储 算法
深入理解操作系统的内存管理机制
【4月更文挑战第24天】 在现代计算机系统中,操作系统扮演着资源管理者的角色,其中内存管理是其核心职责之一。本文将探讨操作系统如何通过内存管理提升系统性能和稳定性,包括物理内存与虚拟内存的概念、分页机制、内存分配策略以及内存交换技术。我们将透过理论与实践的结合,分析内存管理的关键技术及其对系统运行效率的影响。
|
9天前
|
存储 算法 数据安全/隐私保护
深入理解操作系统的内存管理机制
【4月更文挑战第17天】 在现代计算机系统中,操作系统扮演着资源管理者的角色,其中内存管理是其核心职能之一。本文探讨了操作系统内存管理的关键技术,包括虚拟内存、物理内存分配与回收、分页和分段机制,以及内存交换技术。通过分析这些机制的原理和实现,我们旨在加深读者对操作系统如何有效管理和保护内存资源的理解。
9 1
|
10天前
|
算法
深入理解操作系统的内存管理机制
【4月更文挑战第15天】 本文将探讨操作系统中至关重要的一环——内存管理。不同于通常对内存管理概念的浅尝辄止,我们将深入研究其核心原理与实现策略,并剖析其对系统性能和稳定性的影响。文章将详细阐述分页系统、分段技术以及它们在现代操作系统中的应用,同时比较它们的效率与复杂性。通过本文,读者将获得对操作系统内存管理深层次工作机制的洞见,以及对设计高效、稳定内存管理系统的理解。
|
21天前
|
缓存 监控 算法
深入理解操作系统的内存管理机制
【4月更文挑战第5天】 随着现代计算机系统的发展,操作系统的内存管理已成为确保系统高效稳定运行的关键因素。本文旨在探讨操作系统中内存管理的基本原理、关键技术及其在实际应用中的优化策略。通过分析内存分配、虚拟内存技术以及内存保护和分页机制等方面,揭示内存管理对提升系统性能的重要性,并提供了一系列优化内存使用效率的方法。

推荐镜像

更多